Certain results on Ricci solitons in α-Kenmotsu manifolds

Rajesh Kumar1, Ashwamedh Mourya2

1Department of Mathematics, Pachhunga University College, Aizawl 796001, India
2Department of Mathematics, Ashoka Institute of Technology and Management, Varanasi 221007, India

In this paper, we study some curvature problems of Ricci solitons in α-Kenmotsu manifold. It is shown that a symmetric parallel second order-covariant tensor in a α-Kenmotsu manifold is a constant multiple of the metric tensor. Using this result, it is shown that if $(\mathcal{L}_V g + 2S)$ is parallel where V is a given vector field, then the structure (g, V, λ) yield a Ricci soliton. Further, by virtue of this result, Ricci solitons for n-dimensional α-Kenmotsu manifolds are obtained. In the last section, we discuss Ricci soliton for 3-dimensional α-Kenmotsu manifolds.

2010 Mathematical Subject Classification: 53C25, 53C10, 53C44

Key words: Ricci soliton, α-Kenmotsu manifold, Einstein manifold.

Introduction

A Ricci soliton are the natural generalization of Einstein metric and are defined on a Riemannian manifold. On the manifold \mathcal{M}, a Ricci soliton is a triple (g, ∇V, λ) with a Riemannian metric g, a vector field V and a real scalar λ such that

$$(\mathcal{L}_V g)(X, Y) + 2S(X, Y) + 2\lambda g(X, Y) = 0, \quad \ldots \quad (1)$$

for any vector fields X, Y on \mathcal{M} where S is the Ricci tensor and \mathcal{L}_V denotes the Lie derivative operator along the vector field V. The metric satisfying (1) are very interesting in the field of physics and are often referred as quasi-Einstein. The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and positive respectively.

Das studied second order parallel tensor on an almost contact metric manifold and found that on an α-K-contact manifold (α being non-zero real constant) a second order symmetric parallel tensor is a constant multiple of the associative positive definite Riemannian metric tensor. It is also proved that in an α-Sasakian manifold there is no non-zero parallel 2-form. The study of Ricci solitons in K-contact manifolds was started by Sharma and in the continuation of this Ghosh, Sharma and Cho studied gradient Ricci soliton of a non-Sasakian (k, μ) -contact manifold. Generally, in a P-Sasakian manifold the structure vector field ξ is not killing, that is $(\mathcal{L}_\xi g) \neq 0$ but in K-contact manifold ξ is a killing vector field, that is $(\mathcal{L}_\xi g) = 0$. Recently, De8 have studied Ricci soliton in P-Sasakian, Barua and De8 have studied Ricci soliton in Riemannian manifolds. Since then several other studied Ricci soliton have been published in various contact manifolds and Einstein problem to Ricci soliton in f - Kenmotsu manifold, Eta-Ricci solitons on para-Kenmotsu manifolds, on contact and Lorentzian manifolds on Sasakian manifold, a -Sasakian manifold, on Kenmotsu manifold, etc.

Motivated by above studies, in this paper we treat Ricci soliton in α-Kenmotsu manifolds. The paper is structured as follows. After
introduction, section 2 is a brief review of α-Kenmotsu manifold. Section 3, is devoted to the study of parallel symmetric second order tensor in α-Kenmotsu manifold and Ricci soliton in α-Kenmotsu manifolds. In this section, we obtain ε relation between symmetric parallel second order covariant tensor and metric tensor in α-Kenmotsu manifold. In the second problem of this section we studied the necessary and sufficient condition of a Ricci semi-symmetric α-Kenmotsu manifold and n-Einstein manifold. Section 4 is devoted to study Ricci soliton in 3-dimensional α-Kenmotsu manifold.

α-Kenmotsu manifold

An n-dimensional real C^ω-manifold M is said to almost contact structure (φ, ξ, η) if it admits a $(1, 1)$ tensor field φ, a contravariant vector field ξ and a 1-form η which satisfy
\[
\eta(\xi) = 1, \varphi^X = -X + \eta(X)\xi, \quad \ldots \ (2)
\]
which implies
\[
\varphi(\xi) = 0, \eta(\varphi X) = 0, \quad \ldots \ (3)
\]
for all vector field X, Y on C^ω. Here C^ω is the Lie algebra of C^ω-vector fields on M. An n-dimensional real C^ω-manifold M equipped with a structure (φ, ξ, η) is called an almost contact manifolds.

An almost contact metric manifold M with metric tensor g which satisfies the conditions
\[
g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \ldots \ (4)
\]
and
\[
g(X, \xi) = \eta(X), \quad \ldots \ (5)
\]
is called an almost contact metric manifold M.

An almost contact metric manifold M is said to be almost α-Kenmotsu manifold if
\[
da = 0, \quad \text{and} \quad d\Phi = 2a \eta \wedge \Phi,
\]
where Φ is a fundamental 2-form defined as $\Phi(X, Y) = g(\varphi X, \varphi Y)$ and α being a non-zero real constant. Moreover, if an almost α-Kenmotsu manifold M satisfies the following relations
\[
(P_X\varphi)Y = -a(g(X, \varphi Y)\xi + \eta(Y)\varphi X), \quad \ldots \ (6)
\]
and
\[
(P_X\xi) = a(X - \eta(X)\xi), \quad \ldots \ (7)
\]
then it is called an α-Kenmotsu manifold.

On an α-Kenmotsu manifold M, the following relations hold.\cite{15,16,17}
\[
R(X, Y)\xi = a^2(\eta(X)Y - \eta(Y)X), \quad \ldots \ (8)
\]
\[
R(\xi, Y)\varphi = a^2(\eta(Y)X - g(X, Y)\xi), \quad \ldots \ (9)
\]
\[
\eta(R(X, Y)Z) = a^2(g(Y, X)\eta(Z) - g(Y, Z)\eta(X)), \quad \ldots \ (10)
\]
\[
S(X, \xi) = -a^2(n - 1)\eta(X), \quad \ldots \ (11)
\]
\[
\eta(R(X, Y)Z) = a^2(g(Y, X)\eta(Z) - g(Y, Z)\eta(X)), \quad \ldots \ (10)
\]
\[
S(X, \xi) = -a^2(n - 1)\eta(X), \quad \ldots \ (11)
\]
for all vector fields X, Y, Z on C^ω, where R is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.

Parallel symmetric second order tensors and Ricci solitons in α-Kenmotsu manifolds

Let h denote a $(0, 2)$ type symmetric tensor field which is parallel with respect to ∇ that is $\nabla h = 0$. Then it follows that\cite{15,16}
\[

for all vector fields X, Y, Z on $C^\omega(M)$, where R is the Riemannian curvature tensor, S is the Ricci tensor of type $(0, 2)$ and g is the Ricci operator defined as $S(X, Y) = g(QX, Y)$.
replaced by S, that is
\[(R(X,Y) \cdot S(U,V)) = -S(R(X,Y)U,V) - S(U,R(X,Y)V). \quad \text{(21)}\]
Taking $R \cdot S = 0$ and putting $X = \xi$ in (21), we have
\[S(R(\xi,Y)U,V) + S(U,R(\xi,Y)V) = 0. \quad \text{(22)}\]
In view of (9) and $\alpha \neq 0$, the above equation becomes
\[\eta(U)S(Y,V) - g(Y,V)S(\xi,V) + \eta(V)S(U,Y) - g(Y,V)S(U,\xi) = 0. \quad \text{(23)}\]
Putting $U = \xi$ in (23) and by using (3), (11) and (12), we obtain
\[S(Y,V) = -\alpha^2(n - 1)g(Y,V).\]
This leads the following theorem.

Theorem 2. A Ricci semi-symmetric α-Kenmotsu manifold is an Einstein manifold.

Corollary 2. If on an α-Kenmotsu manifold the tensor field $(\mathcal{L}_g + 2S)$ is parallel, then (g,V,λ) gives a Ricci soliton.

Proof. A Ricci soliton in an α-Kenmotsu manifold is defined by (1). Thus $(\mathcal{L}_g + 2S)$ is parallel. By theorem (1) it is clear that if an α-Kenmotsu manifold admits a symmetric parallel $(0, 2)$ tensor, then the tensor is a constant multiple of the metric tensor. Hence $(\mathcal{L}_g + 2S)$ is a constant multiple of metric tensor g so that $(\mathcal{L}_g + 2S)(X,Y) = g(X,Y)h(\xi,\xi)$, where $h(\xi,\xi)$ is a non zero constant. It is the application of the theorem (1) to Ricci soliton.

Theorem 3. If a metric g in an α-Kenmotsu manifold is a Ricci soliton with $V = \xi$ then it is η-Einstein.

Proof. Putting $V = \xi$ in (1), we have
\[(\mathcal{L}_g)(X,Y) + 2S(X,Y) + 2\alpha g(X,Y) = 0, \quad \text{(24)}\]
where $(\mathcal{L}_g)(X,Y) = g(V_\xi,\xi) + g(X,V_\xi) - 2\alpha g(V_\xi,\eta). \quad \text{(25)}$
Substituting (25) in (24) and by use of (7), we obtain
\[S(X,Y) = -(\alpha + \lambda)g(X,Y) + \alpha \eta(X)\eta(Y). \quad \text{(26)}\]
Hence the result.

Theorem 4. A Ricci soliton (g,ξ,λ) in an n-dimensional α-Kenmotsu manifold cannot be steady but is shrinking.

Proof. In the Linear Algebra either the vector field $V \in \text{Span } \xi \text{ or } V \perp \xi$. However, the second case seems to be complex to analyze in practice. For this reason, we investigate for the case $V = \xi$.

By a simple computation of $(\mathcal{L}_g + 2S)$, we obtain
\[(\mathcal{L}_g)(X,Y) = 0. \quad \text{(26)}\]

\[h(\xi,\xi) = -2\lambda, \quad \text{(27)}\]
where $h(\xi,\xi) = (\mathcal{L}_g)(\xi,\xi) + 2S(\xi,\xi). \quad \text{(28)}$

Using (12) and (26) in above equation, we get
\[h(\xi,\xi) = 2\alpha^2(n - 1). \quad \text{(29)}\]
Equating (27) and (29), we have
\[\lambda = -\alpha^2(n - 1). \quad \text{(30)}\]
Since α is some non-zero scalar function, we have $\lambda \neq 0$, that is Ricci soliton in an n-dimensional α-Kenmotsu manifold cannot be steady but is shrinking because $\lambda < 0$.

Theorem 5. If an n-dimensional α-Kenmotsu manifold is η-Einstein then the Ricci solitons in an α-Kenmotsu manifold that is (g,ξ,λ) where $\lambda = -\alpha^2(n - 1)$ with varying scalar curvature cannot be steady but it is expanding.

Proof. The proof consists of three parts.

(i) We prove α-Kenmotsu manifold is η-Einstein.

(ii) We prove the Ricci soliton in α-Kenmotsu manifold is consisting of varying scalar curvature.

(iii) We find that the Ricci soliton in α-Kenmotsu manifold is expanding.

First we prove that the α-Kenmotsu manifold is η-Einstein: the metric g is called η-Einstein if there exists two real function a and b such that the Ricci tensor of g is given by the general equation
\[\mathcal{S}(X,Y) = ag(X,Y) + bn(X)\eta(Y). \quad \text{(30)}\]
Let $e_i (i = 1, 2, \ldots, n)$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X = Y = e_i$ in (30) and taking summation over i, we get
\[r = an + b. \quad \text{(31)}\]
Again putting $X = Y = \xi$ in (30) then by use of (12), we have
\[a + b = -a^2(n - 1). \quad \text{(32)}\]
Then from (31) and (32), we have
\[a = \left(a^2 + \frac{r}{n - 1}\right), \quad b = \left(-a^2 + \frac{r}{n - 1}\right). \quad \text{(33)}\]
Substituting the value of a and b from (33) in (30), we have
\[\mathcal{S}(X,Y) = \left(a^2 + \frac{r}{n - 1}\right)g(X,Y) - \left(n a^2 + \frac{r}{n - 1}\right)\eta(X)\eta(Y). \quad \text{(34)}\]
the above equation shows that α-Kenmotsu manifold is η-Einstein manifold.

Now, we have to show that the scalar curvature r is not a constant and it is varying
For an n-dimensional α-Kenmotsu manifolds the symmetric parallel covariant tensor $h(X, Y)$ of type $(0, 2)$ is given by

$$ h(X, Y) = (L_g(X, Y) + 2S(X, Y). \quad \ldots \ldots (35) $$

By using (25) and (34) in (35), we have

$$ h(X, Y) = 2\left\{\alpha(a + 1) + \frac{r}{n-1}\right\}g(X, Y) - 2\left\{\alpha(na + 1) + \frac{r}{n-1}\right\}\eta(X)\eta(Y). \quad \ldots \ldots (36) $$

Differentiating (36) covariantly with respect to Z and using (14), we have

$$ (\mathcal{P}_2 h)(X, Y) = 2\left\{(Za)(\alpha(a + 1) + a(Za) + \frac{V_g}{n-1}\right\}g(X, Y) $$

$$ \quad - 2\left\{(Za)(na + 1) + n a(Za) + \frac{V_g}{n-1}\right\}\eta(X)\eta(Y) $$

$$ \quad - 2\left\{a(na + 1) + \frac{r}{n-1}\right\}a(g(Z, X) - \eta(Z)\eta(X) $$

$$ \quad + g(Z, Y) - \eta(Z)\eta(Y)). \quad \ldots \ldots (37) $$

By substituting $Z = \xi$ and $X = Y \in \text{(Span)}^\perp$ in (37) and by using $\mathcal{P}h = 0$, we have

$$ \mathcal{P}_1 = -(n - 1)\mathcal{P}_1(a(a + 1)) \quad \ldots \ldots (38) $$

On integrating (38), we have

$$ r = -(n - 1)\alpha(a + 1) + c, \quad \ldots \ldots (39) $$

where c is some integral constant. Thus from (39), we have r varies a scalar curvature.

Finally, we have to check the nature of the soliton that is Ricci soliton in α-Kenmotsu manifold:

From (1), we have

$$ h(X, Y) - 2\lambda g(X, Y) \text{ then putting } X = Y = \xi, \text{ we have} $$

$$ h(\xi, \xi) = -2\lambda. \quad \ldots \ldots (40) $$

On putting $X = Y = \xi$ in (36), we have

$$ h(\xi, \xi) = -2(n - 1)\alpha^2. \quad \ldots \ldots (41) $$

Equating (40) and (41), we have

$$ \lambda = (n - 1)\alpha^2. $$

This show that $\lambda > 0, \quad \forall \ n > 1$ and hence Ricci soliton in an α-Kenmotsu manifold is expanding.

Theorem 6. If a Ricci soliton (g, ξ, λ) where $\lambda = 2\alpha^2$ of 3-dimensional α-Kenmotsu manifold with varying scalar curvature cannot be steady but it is expanding.

Proof. The proof consists of three parts.

(i) We prove that the Riemannian curvature tensor of 3-dimensional α-Kenmotsu manifold is η-Einstein.

(ii) We prove that the Ricci soliton in 3-dimensional α-Kenmotsu manifold is consisting of varying scalar curvature.

(iii) We prove that find that the Ricci soliton in 3-dimensional α-Kenmotsu manifold is expanding.

The Riemannian curvature tensor of 3-dimensional α-Kenmotsu manifold is given by

$$ R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X - S(X, Z)Y - \frac{\lambda}{2} g(Y, Z)X - g(X, Z)Y). \quad \ldots \ldots (42) $$

Putting $Z = \xi$ in (42) and by using (8) and (11), we have

$$ a^2(\eta(X)Y - \eta(Y)X) = (\eta(Y)QX - \eta(X)QY - \frac{2}{2} g(Y, Z)X - \eta(X)Y). \quad \ldots \ldots (43) $$

Again putting $Y = \xi$ in (43) and by using (2), (3) and (13), we get

$$ QX = \left(\alpha^2 + \right) X - \left(3\alpha^2 + \right) \eta(X)\xi. \quad \ldots \ldots (44) $$

By taking an inner product with Y in (44), we have

$$ S(X, Y) = \left(\alpha^2 + \right) g(X, Y) - \left(3\alpha^2 + \right) \eta(X)\eta(Y). \quad \ldots \ldots (45) $$

It shows that 3-dimensional α-Kenmotsu manifold is η-Einstein manifold.

Now, we have to show that the scalar curvaturer is not a constant that is r is varying We have

$$ h(X, Y) = (L_g(X, Y) + 2S(X, Y). \quad \ldots \ldots (46) $$

By using (25) and (45) in (46), we have

$$ h(X, Y) = 2\left\{\alpha(a + 1) + \frac{1}{n}\right\}g(X, Y) - 2\left\{\alpha(3a + 1) $$

$$ \quad + \right\}g(Y, Z)X - \eta(Y)). \quad \ldots \ldots (47) $$

Differentiating above equation with respect to Z, we have

$$ (\mathcal{P}_2 h)(X, Y) = 2\left\{(Za)(\alpha + 1) + a(Za) + \frac{V_g}{2}\right\}g(X, Y) $$

$$ \quad - 2\left\{(Za)(na + 1) + a(3Za) + \right\}\eta(X)\eta(Y) $$

$$ \quad - 2\left\{a(3a + 1) + \frac{1}{2}\right\}(\mathcal{P}_1 g)(X)\eta(Y) $$

$$ \quad + \eta(X)(\mathcal{P}_2 \eta(Y)). \quad \ldots \ldots (48) $$

By substituting $Z = \xi$ and $X = Y \in \text{(Span)}^\perp$ in (48) and by using $\mathcal{P}h = 0$, we have

$$ \mathcal{P}_1 = -(n - 1)\mathcal{P}_1(a(a + 1) \quad \ldots \ldots (49) $$

On integrating (49), we have

$$ r = -(n - 1)\alpha(a + 1) + c, \quad \ldots \ldots (50) $$

where c is some integral constant. Thus from (50), we have r is a varying scalar curvature.

Finally we have to check the nature of the Ricci soliton (g, ξ, λ) in 3-dimensional α-Kenmotsu manifold.

From (1), we have

$$ h(X, Y) - 2\lambda g(X, Y) \text{ then putting } X = Y = \xi, \text{ we have} $$

$$ h(\xi, \xi) = -2\lambda. \quad \ldots \ldots (51) $$

On putting $X = Y = \xi$ in (47), we have

$$ h(\xi, \xi) = -4\alpha^2. \quad \ldots \ldots (52) $$

Equating (51) and (52), we have
Equating (51) and (52), we have
\[\lambda = 2\alpha^2. \]
This shows that \(\lambda > 0 \) and hence Ricci soliton in an \(\alpha \)-Kenmotsu manifold is expanding.

References