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 ABSTRACT  
 
This paper is a discussion on a brief introduction to the density functional theory (DFT). The for-
malism and the approximations made for easy computation has been mentioned along with the two 
theorems of Hohenberg and Kohn on which the density functional theory is based. In the end, the 
Kohn-Sham equation which turned density functional theory into a practical tool to obtain the 
ground state density has been explained along with the LAPW method.   
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INTRODUCTION 
 
The study of the properties of a solid espe-

cially the electronic band structure is a com-
plex quantum mechanical many body prob-
lem whose exact solution is well nigh impossi-
ble, as such many approximate methods have 
been developed. In general there are two types 
of methods for quantum mechanical ap-
proaches: Hartree Fock (HF) method and 
Density Functional Theory (DFT).1 HF is 
based on wave function description in which 
exchange is treated but correlation is ignored. 
The density functional theory on the other 
hand is based on the electron density rather 
than on the wave function and treats both ex-
change and correlation but only approxi-
mately. In the density functional theory, the 

calculation of ground state properties such as 
band structure, optical properties, lattice pa-
rameter, equilibrium volume, phonon fre-
quencies, elastic constants etc, which are 
based on the calculation of the total energy, 
are described quite accurately. However, the 
treatment of excited states is not rigorously 
justified. This is due to the fact that the 
Hohenberg-Kohn1 theorem is exact only for 
the ground state and that the Kohn-Sham 
(KS) eigenstates2 must not be interpreted as 
single-electron states. Apart from this, ap-
proximations must be made also in the 
ground state calculations for describing ex-
change and correlation effects. In spite of this, 
the interpretation of the KS states in terms of 
excited states has been successful for a variety 
of materials. Moreover, it has been claimed 
that the KS wave functions hardly differ from 
the many-body wavefunctions.3-5 Thus it can 
safely be stated that the density functional 
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theory is one of the most successful methods 
for calculating lattice properties of a solid. 
We discuss here the basic formalism of band 
structure calculation by using the linearised 
augmented plane wave (LAPW) method.6-10                   

 

FORMALISM 
 
A solid is a collection of a heavy positively 

charged nuclei and lighter negatively charged 
electrons. If we have N nuclei, we are dealing 
with N+ZN electromagnetically interacting 
quantum particles. This is a quantum many 
body problem and the exact many particle 
hamiltonian for such a system is, 

 
 

(1) 
where Mi is the mass of the nucleus at Ri, me is 

the mass of the electron at ri. The first term is 

the kinetic energy operator for the nuclei, the 
second term represents kinetic energy opera-
tor for the electrons. The last three terms de-
scribe the coulomb interaction between elec-
trons and nuclei, between electrons and other 
electrons and between nuclei and other nu-
clei. It is impossible to solve Eq. (1) exactly, 
as such in order to obtain acceptable appro-
priate eigen states, approximations are made. 

 

BORN-OPPENHEIMER APPROXIMATION 
 
In this approximation, the nuclei which 

are heavier and are therefore much slower 
than the electrons are taken stationary and are 
assumed to be in instantaneous equilibrium 
with the electrons. As a consequence, the nu-
clei do not move anymore and their kinetic 
energy is zero so that the first term in Eq. (1) 
vanishes and the last term reduces to a con-
stant. Thus we are left with kinetic energy of 
the electron gas, the potential energy due to 
electron-electron interactions and the poten-

tial energy of the electrons in the (now exter-
nal) potential of the nuclei. Thus the Hamilto-
nian can be written as, 

(2) 
 

The quantum many body Hamiltonian ob-
tained after Born-Oppenheimer approxima-
tion is much simpler than the original one but 
still far too difficult to solve. One of the well 
known methods used to reduce Eq. (2) to an 
approximate but tractable form is the density 
functional theory. 

 

DENSITY FUNCTIONAL THEORY  
 

Density functional theory is a universal 
approach to the quantum mechanical many 
body problem, where the system of interact-
ing electrons is mapped in a unique manner 
onto an effective non-interacting system with 
the same total density. It is based on the two 
theorems of Hohenberg and Kohn.1 

First theorem: There is one to one corre-

spondence between the ground state density ρ
( r ) of a many electron system and the exter-

nal potential Vext. This means that the ground 

state expectation value of any observable Ô is 

a unique functional of the exact ground state 
electron density 

 
(3) 

Second theorem: For Ô being the hamilto-

nian Ĥ, the ground state total energy func-

tional    is of the form 
 

(4) 
 

(5) 
 

where, , the Hohen-
berg-Kohn density functional is universal for 

any many electron system. EVext [ρ] reaches its 

minimal value (equal to the ground state total 
energy) for the ground state density corre-
sponding to Vext. The consequence of the den-

sity functional theory is that the electron den-

sity ρ( r ) uniquely defines the total energy E 
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of a system and is a functional E[ρ] of particle 

potential, which consists of a classical mean-
field part and an exchange-correlation part 
that in principle incorporates all correlation 
effects exactly. 

 

THE KOHN-SHAM EQUATIONS  
 
The equations of Kohn and Sham2 turned 

density functional theory into a practical tool 
to obtain the ground state density. The Kohn-
Sham theorem can be formulated as: 

The exact ground-state density ρ( r ) of an 

N-electron system is 
 

(6) 
 

Where the single-particle wave functions φi 

( r ) are the N lowest-energy solutions of the 

Kohn-Sham equation 
 

(7) 
Where, the Kohn-Sham Hamiltonian is 
 
 
 
 
 

(8) 
where, Vxc is the exchange correlation poten-

tial and Vext is the external potential from the 

nucleus. It must be noted that the single-

particle wave function φi ( r ) are not the wave 

functions of electrons but they describe 
mathematical quasi-particles without a direct 
physical meaning. Only the overall density of 
these quasi-particles is guaranteed to be equal 
to the true electron density. Also the single-

particle energies εi are not single electron en-

ergies.  
Both the Hartree operator VH and the ex-

change-correlation operator Vxc  depend on 

the density ρ( r ), which in turn depends on 

the φi ( r ) which are being searched. This 

means we are dealing with a self-consistency 
problem. To overcome this, an iterative pro-

cedure11 is needed (Fig. 1). Some starting den-

sity ρ0  is guessed, and a Hamiltonian HKS1 is 

constructed with it. The eigenvalue problem 
is solved and results in a set of φ1 from which 

a density ρ1 can be obtained. Most probably 

ρ0 will differ from ρ1. Now ρ1 is used to con-

struct HKS2, which will yield a ρ2, etc. This 

procedure is continued till the series con-

verges to a density ρf which will generate HKSf 

which yields as solution again ρf  so that this 

final density is in consistent with the Hamil-
tonian. 

 

THE LAPW METHOD 
 
The linearised augmented plane wave 

(LAPW) method is based on the density func-
tional theory for the treatment of exchange 
and correlation and uses, e.g. the local spin 
density approximation (LSDA). Like most 
energy-band methods, the LAPW method is a 
procedure for solving the Kohn-Sham equa-
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Figure 1. Flow chart for the nth iteration in the self con-

sistent procedure to solve Kohn-Sham equations.  
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tions for the ground state density, total energy 
and (Kohn-Sham) eigenvalues (energy bands) 
of a many electron system (crystal) by intro-
ducing a basis set which is especially adapted 
to the problem. This adaptation is achieved 

by dividing the unit cell into (I) non-

overlapping atomic spheres (centered at the 

atomic sites) and (II) an interstitial region 
(Fig. 2).  

 

In the two types of regions different types 
of basis sets are used: 

(a) Inside the atomic sphere I of radius Rt, 

a linear combination of radial functions times 
spherical harmonics Ylm ( r ) is used as given 

below12 

 

 
(9) 

where ul( r,El ) is the (at the origin) regular 

solution of the radial Schrödinger equation 
for energy El  (chosen normally at the centre 

of the corresponding band with l-like charac-

ter) and spherical part of the potential inside 

the sphere I; ůl( r,El ) is the energy derivative 

of ul evaluated at the same energy El . A linear 

combination of these two functions consti-
tutes the linearization of the radial function. 
The coefficients Alm and Blm are functions of kn 

determined by requiring that this basis func-
tion matches each plane wave (PW), the cor-
responding basis function of the interstitial 
region. ul  and ůl are obtained by numerical 

integration of the radial Schrödinger equation 
on a radial mesh inside the sphere. 

(b) In the interstitial region II, a plane 

wave expansion is used 
 

(10) 
 

where kn = kn + Kn ; Kn are the reciprocal lat-

tice vectors and k is the wave vector inside 

the first Brillouin zone. Each plane wave is 
augmented by an atomic-like function in 
every atomic sphere. 

The solution to the Kohn-Sham equations 
are expanded in this combined basis set of 
LAPW’s according to the linear variation 
method 

(11) 
 

and the coefficients Cn are determined by the 

Rayleigh-Ritz variation principle. The conver-
gence of this basis set is controlled by a cut-
off parameter RmtKmax = 6 – 9, where Rmt is the 

smallest atomic sphere radius in the unit cell 
and Kmax is the magnitude of the largest K vec-

tor in Eq. (11). On the basis of these approxi-
mations, FORTRAN programmes had been 
written and developed into a code called 
WIEN2k11 code, which is a multiple tasked 
code. This code can be used to compute band 
structure as well as other properties like den-
sity of states, x-ray spectra, optical properties 
etc. 
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