

www.sciencevision.org

Original Research

Sci Vis 11 (4), 189-197 October-December, 2011 ISSN (print) 0975-6175 ISSN (online) 2229-6026

In-silico comparison of distal-less protein variation in insects

H. Tejmala¹, S. Brindha¹, G. Gurusubramanian² and N. Senthil Kumar^{1*}

¹ Bioinformatics Infrastructure Facility, Department of Biotechnology, ² Department of Zoology, Mizoram University, Aizawl 796 004, India

Received 23 July 2011 | Revised 25 October 2011 | Accepted 31 October 2011

Abstract

Distal-less (DII) protein is the first genetic signal for limb formation to occur in the developing zygote in insects. The function seems to be different across various organisms, like the DII in butterflies are not only involved in limb formation but also take part in eyespot and wing pattern formation. Hence, the study of the sequence variation of the DII protein of different insects might help us in better understanding of its evolutionary divergence and in turn its function in different insects. The sequence of DII protein were retrieved from the NCBI database and was used to study its relationships among other insects species using MEGA 4.0 and analysis of the physicochemical properties was done using a computational tool called PROT-PROP. The DII protein in the insects showed variations (31-94% identity) in their sequences when BLAST was performed, but the homeobox domain exhibiting helix-turn-helix (HTH) was found to be conserved. Presence of motifs with identical amino acid sequence and presence of regions with poly-amino acids might be the reason for the differences in the role of DII in different insects. In the phylogenetic tree, insects belonging to the same order were found to cluster together and exhibit genetic relatedness.

Key words: Distal-less; homeobox domain; motif; poly-amino acids phylogeny; PROT-PROP; signature sequence.

INTRODUCTION

A family of transcription factors of *Hox* gene are major regulators of animal development.¹ The homeobox domain which is now known to be well-conserved in many other animals, including vertebrates was first identified in a number of *Drosophila* homeotic and segmentation proteins.² The homeodomain-

Corresponding author: N. Senthil Kumar Phone: +91-0389-2330859 E-mail: <u>nskmzu@gmail.com</u> containing transcriptional regulators are encoded by *Hox* genes that operate differential genetic programs along the anterior-posterior axis of animal bodies.³ This domain binds DNA through a helix-turn-helix (HTH) structure which is characterized by two alphahelices makes intimate contacts with the DNA and are joined by a short turn.⁴ This family of homeobox transcription factors known as *Distal-less* (*DII/DIx*) are known for being involved in limb formation in many insects and vertebrates.⁵ Antennae, labium, legs and wings originate from imaginal discs (the small sacs of epithelial cells that grow and develop during the larval stage).⁶ DIx homeobox genes which is mammalian derived are homologs of the Drosophila Distalless (DII) gene. The DIX/DII gene family appears to be of ancient origin which play essential role in appendage development in all species in which it has been identified.⁷ When D// gene switches on at a certain stage during the growth of insect larva, it causes some of its cells to organize into legs. Stumps formation was observed when DII was switched off.⁸ During embryogenesis, Hox proteins are expressed largely in the abdominal segments, where they can suppress thoracic leg development.⁹ Gain and loss of transcriptional activation and repression functions in Hox proteins can be a plausible mechanism to diversify morphology during animal evolution.¹⁰

Proteins were the first molecular sequences to be used for phylogenetic inference.¹¹ Proteins constantly change shape and form to perform their biological roles. Since amino acid residues play an important role in stability and function, they are likely to be evolutionarily conserved in a protein family.¹² The hydrophobic core is found to contain residues important for stability.¹³ Functional residues are found to be close together in proteinrotein interfaces.¹⁴ In order to know the structure and function that are evolutionarily conserved, it is important to understand about the amino acids composition and physicochemical features of protein.¹³

Our present work aims to study the diversity of DII protein of some insects and understand their genetic relatedness through phylogeny. Pattern of variation of the DII protein among insects were studied in detail using PROT-PROP and various web-based tools and phylogenetic analysis was performed using MEGA 4.0.

MATERIALS AND METHODS

Sequence retrieval and local sequence align-

ment

The sequence of DII protein was retrieved NCBL the (http://www. from ncbi.nlm.nih.gov) in FASTA format. BLAST¹⁵ was performed for the *Bicyclus any*nana DII protein sequence retrieved from NCBI to identify closely related sequences of DII protein in different organisms. The DII protein sequences for the 9 different insects included in the study are as follows: AF404825_1 [*B. anynana*]; ABD97849.1] [*Tetranychus urticae*]; AAB24059.1 [*Drosophila melanogaster*]; NP_001124509.1| [Apis mellifera]; AAG39634.1 | AF317551_1 [*Tribolium* castaneum]; BAE78537.1 [*Harmonia axyridis*]; AF404110_1 homeotic transcription factor dll [Junonia coenia]; BAG06741.1 homeotic protein [Athalia rosae]; XP_002423032.1 | Homeotic protein, putative [*Pediculus humanus corporis*]. Multiple sequence alignment of all these sequences was carried out using ClustalW from EMBL-EBI to find out the sequence similarity and conserved regions.

Phylogenetic analysis

Phylogenetic analysis of DII protein sequence through neighbour-joining (NJ) with bootstrapping was carried out using Mega 4.0 software, prior to which the multiple sequence alignment of the sequences were also analyzed using ClustalX from MEGA 4.0.¹⁶ Phylogenetic tree was constructed by the software showing the relationship among the sequences. The tree gives different clusters showing their relationship with each other. The sequences which lie in the same cluster are closely related. Bootstrap support was estimated using 1000 replicates.¹⁷

Analysis of physicochemical properties of the protein sequences

DII sequences were analysed with PROT-

Tejmala et al.

Figure 1. Arthropods used in the study. 1: *Bicyclus anynana* 2: *Junonia coenia* (Lepidoptera), 3: *Tetranychus urticae* (Arachnida), 4: *Athalia rosae* (Hymenoptera), 5: *Tribolium casteneum* 6: *Harmonia axyridis* (Coleoptera), 7: *Pediculus humanus corporis* (Phthiraptera), 8: *Drosophila melanogaster* (Diptera), 9: *Apis mellifera* (Hymenoptera).

PROP that characterizes physico-chemical properties of a protein in a single-window application. Other significant features of this software includes finding the subcellular location (intra or extra) of a protein, calculation of numerical values for hydrophobicity, hydrophilicity, composition of small and large amino acids, net hydrophobic content in **terms of low/high, and Navie's algorithm to** calculate theoretical pl.¹⁸ Web-based tools like PSIPRED¹⁹, Scansite²⁰ were used for secon-

dary structure and motif analysis respectively.

Results and Discussion

Sequence retrieval

B. anynana DII protein sequence was retrieved from the NCBI in FASTA format. The sequence of the protein is the following:

In-silico comparison of distal-less protein variation in insects

-----MTTOELDH---OHHHLGGSOTPHDISNSTNSTPTNVSSKSAFIELOOH 45 B.anynana -----MTTQELDH---QHHHLGGSQTPHDISNSTNSTPTNVSSKSAFIELQQH 45 J.coenia -----IPGKSAFVELQQH 40 D.melanogaster -----VSKSAFIELQQH 32 T.castaneum -----VSKSAFIELQQH 32 H.axyridis -----MEOHLHHT---GLGSVTPGPPGNGGDSTTSSTPVSOSGKSAFIELOHN 45 A.mellifera -----MEQHLHHA---GLGSVTPGPAGNGGDS-ASSTPVSQSGKSAFIELQHN 44 A rosae P.humanus MWSNKEFVVVVVVTGPQIDMSLLKGSPFGSGTGNNNGGSNTPTPTPIPLNSNDNLDHHHS 60 T.urticae -----HEASGFPSPR-SLG-- 82 B.anynana -----HEASGFPSPR-SLG-- 82 J.coenia -----SGFPSPRSALG-- 73 D.melanogaster T.castaneum -----GYGPLR--TSYQHHFNSPAGNAHTGPTG---THDAGFPSPRGALGA- 73 -----GYGPLR--TSYQHHFNSPAANAHGGPGG---GHDGGFPSPRSALSA- 73 H.axyridis A.mellifera NLYNPASLRGGYPGGHNVPGAHQFSHQVGALSHQTSGPGSGNQQHADAGFPSPR-SLAG- 103 NLYNPASLRGGYPGGHNVPGSHQFPHQVGSLGHQGSGPGSGNQQHADSGFPSPRSALAG- 103 A.rosae P.humanus THGHHLNPPPTPHNNESLSNPNTPVPPSNTPGGLNSLNKSAFIELQQQYNPAIRAAYGHF 120 T.urticae B.anynana -----CGLSDD 118 ------YPFPPMHQNTY-GYHLGSYAPQCASPPKDEK-----CGLSDD 118 J.coenia D.melanogaster -----YPFPPMHONSYSGYHLGSYAPPCASPPKDDFSI-----SDKCED 112 T.castaneum -----YPFRPMHQNSYTGYHLGSYAANCPPSPKDDEKC-----LSLERP 112 -----YPFPPMHQNSYTGYHLGSYAANCPPSPKDDDKC-----LSLERP 112 H.axyridis A.mellifera ------YPFAPMHQHNAYGYHLGSYAPQCPSPPKDEKCG------GSLVDE 142 -----YPFAPMHQHNTYGYHLGSYAPQCPSPPKDGEYPNYLSPLGDKSGSLVDE 152 A.rosae NHHQTSPGSGGYPFPPMHQNSYSSYHLGGYGPQS-PPK ESELDK-----IGVEDG 169 P. humanus T.urticae -----HEASPHFQPGPTPPRDEKPTLEEISR------ 26 •• * PGLR----VNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 173 B.anynana PGLR----VNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 173 SGLR----VNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 167 J.coenia D.melanogaster T.castaneum SG-----GGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 164 SG-----GGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 164 LGGGGGGGSLRNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 202 H.axyridis A.mellifera LGGGGGGGSLRNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 212 PLR-----VNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 223 A.rosae P.humanus -----VNGKNKKNWKPRTIYSSIQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 77 T.urticae **** ** ** VKIWFQNRRSKYKKMMKAAQVG----AVPPGLGLPPGSPPNNNQLLHGGGGGSSSGSQHSP 229 B.anynana VKIWFQNRRSKYKKMMKAAQVG----GAPPGLG-PPASPPNNNQLLHGGGGGSSSGSQHSP 228 J.coenia VKIWFQNRRSKYKKMMKAAQGPGTNSGMPL<mark>GGGG</mark>PNPGQHSPNQMHSGGNNGGGSNSGSP 227 D.melanogaster VKIWFQNRRSKYKKMMKAAQVS-----GGNNNNGTPGGHSGFWGQLGAAVDESRTP 215 VKIWFQNRRSKYKKMMKAAQVP------GGNNNNGTPGGHAGLLGSN--ANLPSSSP 213 T.castaneum H.axyridis VKIWFQNRRSKYKKMMKAAQQG------GGGGGGQQHG--SLLAGGTALPGGPSPQP 250 VKIWFQNRRSKYKKMMKAAQQG------GGGGGGQQHG--SLLAGGTALPGGPSPQP 260 A.mellifera A.rosae VKIWFQNRRSKYKKMMKAAQNTGPGGQNNN<mark>GGG</mark>NGSPAPPGGATVGILGGNNSTGSQNSP 283 P.humanus VKIWLQNKRSKNKKMQKAQEAVN-----<mark>GGG</mark>QVNGSQGVACGTGGGRRGRGGNQGQG 129 T.urticae ****:**:*** *** *** : B.anynana SGYAGGPAQAHSPTPSSTPVSELSPGLSPTATPWDVKQPPQPSWDVKVGYPTAGRSPDGT 289 SAYQSGPTQAHSPTPSSTPVSELSPGLSPTGTPWDVKQPPQPAWDVKVGYPTAGRSPDGT 288 J.coenia D.melanogaster SHYLP---PGHSPTPSSTPVSELSPEFPPTG----LSPPTQAPWDQKP-----H 269 RPKHDGRGRIVERFTSDRVHAALVT--SPRA----RPLARTCRDNRLLVLAG----- 261 T.castaneum GPQGQG------ 226 H.axyridis GOPGSLMOGGGGSSVSGSPTTGYLGGMGGGA---GGHTPGSSSPGSEMSPOHN----- 300 A.mellifera GQPGSLMQGGGGGSSVSGSPTTGYLGGMGGGG---GGHTPGSSSPGSEMSPQHN----- 310 A rosae -NYGHHNQNQTSPSPSSTPVSDMSPHGLSGS-----PPTMNWDMKPNINNLG----- 329 P.humanus T.urticae

Science Vision © 2011 MIPOGRASS. All rights reserved

Tejmala et al.

B.anynana J.coenia D.melanogaster T.castaneum H.axvridis	SCDVKPPHQQSWDPRVGYGAPPGPWDMKGAHAHAI S-DVKPPHQQSWDPRVGYGAPPGPWDMKGAD-HAI WIDHKPPPQMTPQPPHPAATLHPQTH TSSPSNRFTRHLIQRRTHTRHTTSP	LHHQGAPQPHPPYVPQYSWYQADA LHHQGAPQPHPPYVPQYSWYQADA HHHNPPPQ-MGGYVPQY-WYLPET INTRGTPRTTPASSRCGQLFNTEE	347 344 316 310
A.mellifera	ESPPAPSWPGEMKHHPHPHAPPHTHHHPHTPG	HPPPPPPPPHHAGYMPQYSWYQADP	358
A.rosae	ESPPAPVWPGEMKHHPHPHGPPHTHHHPHTPG	HPPPPPPPHHAGYMPQYSWYQADP	368
P.humanus	VTPTHHTTGHPHHTPTH	HHPTHHSYMPQYSWYNADT	365
T.urticae	QQQSLDTQPGVGLSSGSPFIKGEGYIPQHSPEV	/PSESHTPLHSSLGPNPGSNGVNSNG	236
B.anynana J.coenia D.melanogaster	-NPGLLTVWPAV -NPGLLTENGLALFHRMGLRSQFLGSNEQNNYDS -NPSLVTVWPAV	358 377 327	
T.castaneum	-SD	312	
H.axyridis			
A.mellifera	-NPGLLT	364	
A.rosae	-NPGLLTVWPAV	379	
P.humanus	ANQPLLTVWPAV	377	
T.urticae	PGAPVNSIGNAT	248	

Figure 2. CLUSTAL 2.1 multiple sequence alignment of DII protein sequences of nine insects and Poly-G regions.

 (1) KPRTIYS<mark>SLQLQQLNRRFQR</mark>TQYLALPERAELAASL</mark>GLTQTQVKIWFQNRRSKYKKM HHHHHHHHHHHHHH
(2) KPRTIYS<mark>SIQLQQLNRRFQR</mark>TQYLALPERAELAASL</mark>GLTQTQVKIWLQNKRSKNKKM

Figure 3. The amino acid differences in the homeobox region of other insects (1) and *Tetranychus urticae* (2). The helix-turn-helix region is also specified.

Figure 4. Phylogenetic tree built using NJ method of MEGA 4.0.

Science Vision © 2011 MIPOGRASS. All rights reserved

III-SIIICO LUIIIPALISULI ULUISLAL-IESS PLULEILI VALIALIULI ILI IIISELI	n-silico	o comparison	of distal-less	protein	variation	in	insect.
--	----------	--------------	----------------	---------	-----------	----	---------

Parameters	B. anynana	J. coenia	D. melano gaster	T. casteneum	H. axyridis	A. mellifera	A. rosae	P. humanus	T. urticae
SULPHUR	2%	2%	3%	2%	3%	3%	2%	2%	0%
amino acids	Cystine: 3	Cystine: 2	Cystine: 2	Cystine: 4	Cystine: 2	Cystine: 2	Cystine: 1	Cystine: 0	Cystine: 1
	Methionine:	Methionine:	Methionine:	Methionine:	Methionine:	Methionine:	Methionine:	Methionine:	Methionine:
	6	7	10	5	6	10	10	10	1
BASIC	13%	13%	12%	19%	15%	14%	13%	13%	12%
Amino	Lysine: 17	Lysine: 17	Lysine:15	Lysine: 13	Lysine: 13	Lysine: 13	Lysine: 13	Lysine: 15	Lysine: 12
Acids	Arginine:12	Arginine:14	Arginine:11	Arginine:31	Arginine:12	Arginine:11	Arginine:11	Arginine10H	Arginine11
	Histidine:21	Histidine:21	Histidine:16	Histidine:16	Histidine:10	Histidine:28	Histidine:28	istidine:25	Histidine: 9
ACIDIC	17%	19%	16%	16%	17%	14%	14%	20%	33%
Amino	Aspartic	Aspartic	Aspartic	Aspartic	Aspartic	Aspartic	Aspartic	Aspartic	Aspartic
Acids	Acid:12	Acid: 14	Acid: 10	Acid: 8	Acid: 4	Acid: 5	Acid: 6	Acid: 8	Acid: 2
	Glutamic	Glutamic	Glutamic	Glutamic	Glutamic	Glutamic	Glutamic	Glutamic	Glutamic
	Acid: 7	Acid: 9	Acid: 7	Acid: 11	Acid: 6	Acid: 9	Acid: 9	Acid: 8	Acid: 10
	Asparagine:	Asparagine:	Asparagine:	Asparagine:	Asparagine:	Asparagine:	Asparagine:	Asparagine:	Asparagine:
	12	16	14	15	13	12	13	39	17
	Glutamine:	Glutamine:	Glutamine:	Glutamine:	Glutamine:	Glutamine:	Glutamine:	Glutamine:	Glutamine:
	30	33	24	16	16	27	27	22	55
Amino acid	A 24, R 12,	A 23, R 14,	A 21, R 11,	A 23, R 31,	A 16, R 12,	A 23, R 11,	A 22, R 11,	A 15, R 10,	A 13, R 11,
residues	N 12, D 12,	, N 16, D	N 14, D 10	N 15, D 8,	N 13, D4,	N 12, D 5,	N 13, D 6,	N 39, D 8,	N 17, D 2,
	C 3, E 7, Q	14, C 2, E	C 2, E 7, Q	C 4, E 11,	C 2, E 6, Q	C 2, E 9, Q	C 1, E 9, Q	C 0, E 8, Q	C 1, E 10,
	30, G 40, H	9, Q 33, G	24, G 36, H	Q 16, G 30,	16, G 29, H	27, G 64, H	27, G 69, H	22, G 40, H	Q 55, G 28,
	21, I5, L	42, H 21, I	16, I 7, L	H 16, I 6, L	10, I 3, L	28, I 3, L	28, I 3, L	25, I9, L	H9, I7, L
	23, K 17, N	14, L 27, K	19, K15, N	22, K 13, N	I 19, K 13, M	126, K13, N	28, K13, N	125, K15, N	I 14, K 12, M
	6, F7, P49	,17, M7, F	10, F8, P	5, F10, P	6, F6, P23	,10, F6, P	10, F6, P	10, F7, P	1, F3, P18,
	S 36, T 18,	9, P48, S	50, S 31, T	25, S 29, T	S 24, T 11,	48, S 37, T	51, S 39, T	45, S 37, T	S 21, T 11,
	W 7, Y 15,	39, T19,	18, W 5, Y	29, W 2, Y	W1, Y9, V	17, W3, Y	14, W4, Y	29, W 5, Y	W 2, Y 3, V
	V 14	W 6, Y 16,	14, V9	9, V 8	3	13, V7	15, V10	13, V15	10
		V 11							

Figure 5. Types of amino acids and residues present in the DII protein of arthropods using PROT-PROP software.

A.mellifera A.rosae	LGGGGGGGSLRNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 2 LGGGGGGGSLRNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ 2)2 12
A.mellifera	VKIWFQNRRSKYKKMMKAAQQGGGGGGGQHGSLLAGGTALPGGPSPQP 2	50
A.rosae	VKIWFQNRRSKYKKMMKAAQQGGGGGGGQHGSLLAGGTALPGGPSPQP 2	50
B.anynana J.coenia	PGLRVNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAELAASLGLTQTQ	73 73
B.anynana	VKIWFQNRRSKYKKMMKAAQVGAVPPGLGLPPGSPPNNNQLLHGGGGSSSGSQHSP 22	29
J.coenia	VKIWFQNRRSKYKKMMKAAQVGGAPPGLG-PPASPPNNNQLLHGGGGSSSGSQHSP 22	28

Figure 6. HTH conserved region is highlighted in black and occurrence of long stretches of poly- amino acids are highlighted in grey (*Apis mellifera* and *Athalia rosae; Bicyclus anynana* and *Junonia coenia*).

Science Vision © 2011 MIPOGRASS. All rights reserved

194

Figure 7. Motif scan graphic results of B. anynana.

Figure 8. Physicochemical analysis of Distal-less protein using PROT-PROP software. 1: *B. anynana* & 2: *J. coenia* (Lepidoptera), 3: *D. melanogaster* (Diptera), 4: *T. urticae* (Arachnida), 5: *H. axyridis* (Coleoptera), 6: *A. mellifera* (Hymenoptera), 7: *A. rosae* (Hymenoptera) 8: *P. humanus corporis* (Phthiraptera), 9: *T. casteneum*.

>AF404825_1 distal-less [B. anynana]

MTTQELDHQHHHLGGSQTPHDISNSTNSTPTNVSSK-SAFIELQQHGYGPFKGGYQHPHHFGSPGGQQNPHEASGFPSP RSLGYPFPPMHQNTYGYHIGSYAPQCASPPKDEKCGLSDDPG LRVNGKGKKMRKPRTIYSSLQLQQLNRRFQRTQYLALPERAEL AASLGLTQTQVKIWFQNRRSKYKKMMKAAQVGAVPPGLGLP PGSPPNNNQLLHGGGGSSSGSQHSPSGYAGGPAQAHSPTPS STPVSELSPGLSPTATPWDVKQPPQPSWDVKVGYPTAGRSPD GTSCDVKPPHQQSWDPRVGYGAPPGPWDMKGAHAHALHH QGAPQPHPPYVPQYSWYQADANPGLLTVWPAV

BLAST was performed using the above sequence and after observing the result, DII protein sequences of nine insects were selected for further analysis (Fig. 1). BLAST result shows ~31-94 % identity among the DII sequences of various insects. A multiple sequence alignment using ClustalW was performed for all the 9 selected sequences. The conserved signature sequences which include the homeobox region have been highlighted in grey (Fig. 2). The region highlighted in dark grey is the HTH motif observed using PSIPRED. It is through this motif where Hox genes bind to DNA. However, slight differences were observed in the homeobox regions of *T. urticae* as compared to the sequences of the other insects (Fig. 3). From the motif scanner results obtained from Scansite, it was found that the homeobox domain of DII consists of 57 amino acids with a HTH region in all the insects included in our study.

Phylogenetic analysis

The NJ method is frequently used because of its demonstrated accuracy for smaller data sets and its computational speed.¹⁶ Phylogenetic analysis of DII protein sequence through NJ with bootstrapping was carried out using Mega 4.0 software. It was found that species belonging to same order were clustered together (Fig. 4). The two lepidopteran species of butterflies B. anynana and J. coenia are clustered together. The dipteran, D. melanogaster, is placed at a different node. T. castaneum and H. axyridis, coleopterans are clustered together. The hymenopteran A. mellifera and A. rosae are also clustered together. P. humanus corporis a phthirapteran is found to lie at a different node. T. urticae an arachnid, order trombidiformes which is an outgroup is found to lie at an isolated node.

Physicochemical analysis of Distal-less protein using PROT-PROP

The percentage occurrence of each amino acid of the DII sequence of each insect as well as the individual sequence details are clearly generated by the PROT-PROP tool. Transcription factors are found to contain numerous repeats of serine, glycine, proline and alanine.²² In our analysis, the same kind of amino acids are found to be quite prevalent (Fig. 5). Amino acid residues are likely to be evolutionarily conserved in a protein family because they play an important role in stability and function. Understanding about the amino acids composition and physicochemical features of protein are essential for knowing the structure and function that are evolutionarily conserved.¹²

Among insects falling in the same clade, sequences seems to exhibit replication slippage in which a codon becomes repeated numerous times and causes the occurrence of **"coding tandem repeats" creating long** stretches of the same amino acid. An example of such a repeat is the polyalanine sequence of the (ultrabithorax) Ubx protein of insects.²³ Occurrence of Poly-G is observed in all the DII sequences of the insects studied (Fig. 2 & 6). Poly-N and Poly-S are also observed in some sequences. These repeats are capable of changing the function of a protein.²³

B. anynana and *J. coenia* (lepidopteran) are observed to have glycine(G) and serine(S) poly-amino acids regions. Hence the similarity in the poly-amino acids regions might contribute to the similarity of the functions of *Dll* in these two Nymphalid butterflies and also in their morphological characters as DII is involved in limb as well as eye-spot formation in both the butterflies. Since the poly-amino acids regions vary in different insects, it might imply the difference in the function of DII seen in different insects. Drosophila DII takes part in appendage and sense organ development²⁴ and in butterflies *DII* reflect the potential for pattern formation in the wing.²⁵ However, it is also found that the poly-amino acids sometimes belong to region of a motif and is found to be conserved between two closely related species. This may also be the reason for the exhibition of similar function of a protein between two closely related species.

From the Scansite result obtained, these motif regions were found to belong mostly to different kinase groups which are believed to be involved in signal transducing events (Fig. 7).

Binding is an important way the activity of transcription factors are regulated and the interaction and binding of transcription factors with one another can be affected by chains of amino acids. Polyglutamine can increase the rate of transcription in the genes that it requlates, while polyalanine can reduce it thereby displaying a situation of modulating activity between the two competing components.²⁶ In our analysis, poly-Q and poly-A regions were observed in the all the sequences, more importantly in the HTH region which might be playing an important role in the modulation of activity during transcription. By observation, comparatively total of poly-Q and poly-A is highest in *T. urticae* which clearly shows the fact that it is an outgroup, belonging to the class arachnida. This variation in total poly-Q + poly-A in the different DII sequences might affect its interaction and binding with other transcription factors and causes functional and morphological differences. According to Fondon and Garner²⁷ repeat length variations in transcription factors correlate with the evolution of specific morphologies in dogs. This can be similar in insects as well.

Cuticle phenotypic variation is observed when *DII* expression is altered.²⁸ Hence, *DII* might be related with the variability of cuticle phenotypes. Cysteine and methionine are found to be rare in insect cuticular proteins²⁹ and alanine, glycine and proline are found to be in high content.³⁰ This was also observed in the insects under study from PROT-PROP analysis (Fig. 8). Intensive study of the physicochemical properties of proteins and their interactions with other homeodomain might be helpful for future protein-protein interactive studies.

Acknowledgement

The authors thank the DBT, New Delhi

Tejmala et al.

for the Bioinformatics Infrastructure Facility and Traineeship for the first author, HT.

References

- Myers P (2008). Hox genes in development: The Hox code. Nature Education 1(1), <u>http://scienceblogs.com/</u> pharyngula/2007/09/the_hox_code.php.
- McGinnis W, Levine MS, Hafen E, Kuroiwa A & Gehring WJ (1984). A conserved DNA sequence in homoeotic genes of the *Drosophila antennapedia* and *bithorax* complexes. *Nature*, 308, 428-33.
- Alonso CR (2002). Hox proteins: sculpting body parts by activating localized cell death. *Curr Biol*, 12, 22.
- 4. Schofield PN (1987). Patterns, puzzles and paradigms -The riddle of the homeobox. *Trends Neurosci*, 10, 3-6.
- 5. Casci T (2002). Developmental biology: *Distal-less* makes the leap. *Nat Rev Genet*, 218, 554-562.
- Cohen B, Simcox AA & Cohen SM (1993). Allocation of the thoracic imaginal primordia in the *Drosophila* embryo. *Development*, 117, 597-608.
- Robledo RF et al. (2002). The DIx5 and DIx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. *Genes Dev*, 16, 1089-1101.
- Zimmer C (1998). Hidden Unity. Discover Magazine 19(1), <u>http://www.discover.com/cover_story/9801-3.html</u>.
- 9. Carroll SB, Grenier JK & Weatherbee SD (2001). From DNA to Diversity. Blackwell Science, London.
- Li X & McGinnis W (1999). Activity regulation of Hox proteins, a mechanism for altering functional specificity in development and evolution. *Proc Natl Acad Sci USA*, 96, 6802-6807.
- 11. Fitch & Margoliash (1967). Construction of phylogenetic trees. *Science*, 155, 279-284.
- Schueler-Furman O & Baker D (2003). Conserved residue clustering and protein structure prediction. *Proteins*, 52, 225-235.
- Shortle D (1992) Mutational studies of protein structures and their stabilities. *Q Rev Biophys*, 25, 205-250.
- DeLano WL (2002). Unraveling hot spots in binding interfaces: Progress and challenges. *Curr Opin Struct Biol*, 12, 14-20.
- Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990). Basic local alignment search tool. *J Mol Biol*, 215, 403-410.

- Tamura K, Dudley J, Nei M & Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol*, 24, 1596-1599.
- Pairot P, Komgrit W & Peter HA (2011). Cryptic biodiversity and phylogenetic relationships revealed by DNA barcoding of Oriental black flies in the subgenus *Gomphostilbia. Genome*, 54, 1-9.
- Brindha S, Senthil Kumar N & Gurusubramanian G (2011). PROT-PROP: J-Tool to classify and predict the subcellular location of proteins based on physiochemical characterization. *Comput Biol Chem* (Communicated).
- Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS & Jones DT (2005). Protein structure prediction servers at University College London. *Nucleic Acids Res*, 33, 36-38.
- Obenauer JC, Cantley LC & Yaffe MB (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. *Nucleic Acids Res*, 31, 3635-3641.
- Tamura K, Nei M & Kumar S (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. *Proc Natl Acad Sci USA*, 101, 11030-11035.
- Caburet S, Cocquet J, Vaiman D & Veitia RA (2005). Coding repeats and evolutionary "agility". *BioEssays*, 27, 581-558.
- Gilbert Scott F (2006). Developmental Biology, 8th edition, Chapter 23, pp. 739-741.
- Panganiban G (2000). Distal-less function during *Droso-phila* appendage and sense organ development. *Dev Dyn*, 218, 554-562.
- Brakefield PM & French V (1999). Butterfly wings: the evolution of development of colour patterns. *BioEssays*, 21, 391-401.
- 26. Myers P (2007). Tandem repeats and morphological variation. Nature Education 1(1), <u>http://scienceblogs.com/ pharyngula/2007/10/tandem repeats and</u> <u>morphologic.php.</u>
- Fondon JW & Garner HR (2004) Molecular origins of rapid and continuous morphological evolution. *Proc Natl Acad Sci USA*, 101, 18058-18063.
- Shiga Y & Yasumoto R (2002). Evolving role of Antennapedia protein in arthropod limb patterning. *Development*, 129, 3555-3561.
- 29. Willis JH (1999). Cuticular proteins in insects and crustaceans. Amer Zool, 39, 600-609.
- Andersen SO, Hojrup P & Roepstorff P (1995). Insect cuticular protein. *Insect Biochem Mol Biol*, 25, 153-176.

Science Vision © 2011 MIPOGRASS. All rights reserved