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ABSTRACT  
 

Photocurrents were calculated using initial state wavefunction obtained by solving one dimensional 
Schrödinger equation in terms of Greens function where the crystal potential is defined by Kronig-

Penny δ-potential. Also a spatially dependent vector potential is used. This model is applied to the 
case of metals W and Be.             
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INTRODUCTION 
 
Angle-resolved photoemission technique is 

now one of the most widely used experimental 
tools for studying the band structure in simple 
and complex systems. Several mathematical 
models have been developed to interpret the ex-
perimental photoemission results. In photoemis-
sion, the evaluation of the matrix element 

‹Ψf|H'|Ψi› is of prime importance as it is directly 

involved in the photocurrent density formula as 
given by Fermi golden rule.1 However the pres-
ence of the surface poses a serious problem as 
the calculation of the initial state wavefunction 

Ψi is a complicated problem and is of fundamen-

tal importance also. 
Photocurrent calculations using the initial 

state wavefunction Ψi deduced by Green func-

tion’s method by solving Schrödinger equation2 
is presented in this paper. The crystal potential is 

defined by Kronig-Penny model to obtain Ψi. 

For the surface state photoemission, Ψi is de-

scribed by the normalized Gaussian state wave-
function whose location with respect to the 
nominal surface plane is determined by zo. The 

photocurrent is calculated by incorporating the 
spatially dependent vector potential which is a 
modified form of the dielectric model as used by 
Bagchi and Kar.3 
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FORMALISM 

 
The photocurrent density formula from 

golden rule1 approximation can be written as  

 (1) 
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where  
i
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 ) refer to the initial (final) state 

wavefunctions and the perturbation H   can be 
written as 
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where m is the mass of the electron, p the one-

electron momentum operator and A the vector 

potential of the incident photon field. 
The photon field vector formulae used in our 

calculations is obtained by using the dielectric 
model of Bagchi and Kar3. With simple 
modifications, we can write the photon field 
vector as 
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The initial state wavefunction deduced by 
using Green’s function method is given by 
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In Eq. 4, for the surface state photoemission 

calculations, )(zi is replaced by a properly 

normalized Gaussian form of the wavefunction 
located at z = zo plane and is given by 

 
1 4

2 2 2( ) 2 exp ( )i z a z zo a         (5) 

where β describes the width of the Gaussian and 

is a dimensionless quantity, a is the surface 

width.  

The final state wavefunction f is the 

scattering state due to the existence of a step 
potential at the surface plane z = 0. This 

potential is defined by )()( zVzV o , where 

)(z  is a unit function. Therefore f  is given 

by 
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 is included on the bulk to 

take into account the inelastic scattering of the 
electrons. The photocurrent was calculated by 
evaluating the matrix element in Eq. (1) and by 
using the above wavefunctions in Eqs. (4), (5) 
and (6).  

The matrix element when expanded is given 
by 
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Some of the matrix element could not be solved 
analytically, hence FORTRAN programs were 
written to solve it. Using the same model and 
parameters as above, photocurrents were 
calculated for W and Be but with the Fresnel 
field which is given by 
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(7) 
This was done in order to see the effect 

inclusion of surface width in our model. 

 

RESULTS AND DISCUSSIONS 
 

The model developed is used to calculate 
photocurrents from metals W and Be. As it is a 

model calculation, the following data is used for 
all the case. Height of the potential barrier 

eVVo 15 , Scattering factor 5.0 , Lattice 

constant, a =5.29 Å, Initial state energy 

eVEi 10  and width of the Gaussian form of 

wavefunction 1 . 

Photocurrent was calculated as a function of 

photon energy  for the location of the initial 

state wavefunction i  at different values of zo 

and for the same values of the surface width 
given by a =5.29 Å. In Fig. 1, we show the 

variation of photocurrent plotted against photon 

energy (  ) for values of zo = 0, - 2.645 and – 

5.29 Å for W. We find that for zo = - 2.645 Å, 

the photocurrent increases with the increase of 

 and becomes maximum at  = 20 eV. 

With the further increase of photon energy, 
photocurrent decreases and shows a minimum 

value at   = 26 eV. The bulk plasmon energy 

(
p ) of W is 25 eV. This means that 

photocurrent tends towards a minimum as   

tends to
p . We have seen that such features 

are also present in the experimentally observed 
results of Weng et al. 4 in which the minimum 

occurs at eV25 and also the theoretical 

calculation of Bagchi and Kar3. For the other 
two locations of the initial state wavefunction

i , that is, zo = 0 and – 5.29 Å, this kind of 

feature as obtained in the case of zo = - 2.645 Å 
is not exhibited. Although a minimum is shown 

at around
p   , peak in photocurrent 

below 
p  is not obtained. Fig. 2 shows the plot 

of photocurrent against photon energy from W 

with the inclusion of Fresnel fields as shown in 
Eq. (13) for zo = 0, - 2.645 and – 5.29 Å. In this 

case we have observed that for the location of 

initial state wavefunction i  at zo = - 2.645 Å, 

there is no peak in photocurrent at  = 20 eV 

that is, below the plasmon energy. There is 
essentially no peak in photocurrent at all 
although an occurrence of minimum is shown at 

p   . For zo = 0 Å, the plot showed a 
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CONCLUSION  
 
In this model, the calculation of the initial 

state wavefunction Ψi by Green function’s 

method was considered only for the bulk photo-
emission. For the surface we have assumed the 
initial state wavefunction to be a Gaussian type 
of wavefunction. The model presented here re-
produces results as obtained by other theoretical 
models like free electron model of Thapa,8 
Kronig Penny potential model of Thapa9 and 
Mathieu potential model of Pachuau.10 Hence, 
from the above observations we can conclude 
that though our model is obtained by simple 
calculations it works well and is applicable to 
metals such as W and Be. 
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increases with the increase of  and becomes 

maximum at  = 12eV, the photocurrent then 

decreases and a minimum is observed at  = 

14 eV. With further increase in photon energy, a 
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= 16 eV, and a second minimum at  = 19 
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essentially no maximum and minimum on 
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