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 ABSTRACT  
 
Tamassy and Binh introduced weakly symmetric Riemannian manifolds. The properties of weakly 
symmetric and weakly Ricci symmetric Riemannian manifolds are studied by some authors. In this 
paper, the conformally flat weakly Ricci symmetric manifolds is considered. In this case the Ricci 
tensor of Riemannian manifold is a quadratic Killing tensor, and some properties of this manifold 
are obtained. In conclusion, it is found that the energy momentum tensor of this space in a perfect 
fluid is a quasi-Einstein tensor and also a Codazzi tensor.    
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INTRODUCTION 
 
A non-flat Riemannian manifold (M,g) can 

be an n-dimensional differentiable manifold 
of class C∞ with metric g and the Riemannian 

connection ∇ (n>2). (M,g) is called weakly 
symmetric1 if there exists 1-forms A, B, C, D, 
E. 

 

 
 
 
 

 
 
 

where R is the curvature tensor of (M,g) and 

X,Y,Zϵχ(M).1,2 

(M,g) is called weakly Ricci symmetric if 
the Ricci tensor S is non-zero and satisfies the 
condition      

 
 
 

(1.1) 
where A,B,C are 1-forms. Such a manifold is 

denoted by (WRS)n . 

Let (M,g) be a spacetime manifold with 

Levi-Civita connection ∇. A quadratic Killing 
tensor is a generalization of a Killing vector is 
defined as a second order symmetric tensor T 

satisfying the condition  

= 0  (1.2) 
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A quadratic conformal Killing tensor is 
analogous generalization of a conformal Kill-

ing vector and is defined as a second order 
symmetric tensor T satisfies the condition 

 

 
 
 
 

                           (1.3) 
 

for a smooth 1-form a(X) on M. The above 

equation is equivalent T(l,l) that  be constant 

along null geodesics with parallely propagated 
tangent vector l.3,4,5  It is shown that4 how the 

fourth first integral of the geodesic equation 
arises from the existence of a quadratic Kill-
ing tensor. Moreover, they proved that every 
vacuum solution(with or without cosmologi-

cal constant) of Einstein’s equations, whose 
Weyl tensor is of type {2,2}admits a quadratic 
conformal Killing tensor that is reducible (i.e. 
cannot be constructed as a linear combination 

of symmetrized tensor products of conformal 
Killing vectors) provided the spacetime ad-
mits two and only two independent Killing 
vectors. It is shown that5  the quadratic Kill-

ing tensor can be used to get Carter’s fourth 
first integral of the equation of motion for 
charged test particles. They further showed 
that the energy-momentum tensor of certain 

test electromagnetic field is a quadratic con-
formal Killing tensor and, in particular, 
showed that the charged Kerr spacetime ad-
mits a quadratic Killing tensor. Sharma and  

Ghosh6 showed that the energy-momentum 
tensor T of an expanding perfect fluid space-

time (M,g) is a nontrivial (i.e. non-Killing) 
conformal Killing if and only if M is shear-
free, vorticity-free and satisfies certain differ-
ential conditions on the energy-density and 

pressure in terms of the expansion and accel-
eration. They also showed that when the en-
ergy-momentum tensor is Killing, M is expan-
sion-free and shear-free and its flow is geo-

desic (not necessarily vorticity-free), and fur-
thermore that its energy-density and pressure 

are constant over M. 
In this paper, the conditions that the Ricci 

tensor of a weakly Ricci symmetric Rieman-
nian manifold be a quadratic Killing tensor or 
a quadratic conformal Killing tensor are ob-
tained. After that, assuming that our manifold 

is conformally flat spacetime, then it is proved 
that the energy-momentum tensor satisfying 
the Einstein’s equations with a cosmological 
constant of this manifold is an Einstein ten-

sor. It is also shown that this energy-
momentum tensor is a Codazzi tensor. 

 

CONFORMALLY FLAT (WRS)N SPACE-

TIMES  
 
    Let us consider that M is a weakly Ricci 

symmetric Riemannian manifold. In this case, 
we denote M by (WRS)n (n<2). In confor-

mally flat (WRS)n with definite metric if A(X) 

≠ 0 then the scalar curvature r is non-zero and 

the Ricci tensor is of the form.7 
(2.1) 

 

In addition, it is proved that8 the scalar 
curvature of a conformally flat weakly Ricci 
symmetric space is constant. The curvature 
tensor of a conformally flat (WRS)n is 

 

 
 
 
 

     (2.2) 
                      

where   
 

     
and r is the scalar curvature of our manifold. 

Now, we can state the following theorems: 
 

THEOREM 2.1.  
 
In a (WRS)n, if the Ricci tensor is a quad-

ratic Killing tensor then the sum of the associ-
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ated 1-forms must be zero (n>3). 
Proof. From (1.1), we can get 

(2.3) 
and 

(2.4) 
Adding (1.1), (2.3) and (2.4) side by side, 

we find 
 

 
     
 

(2.5) 
If S(X,Y) is a quadratic Killing tensor, from 

(1.2) and (2.5), it can be obtained that 

(2.6) 
 In Walker’s Lemma,9 it is said that if a

(X,Y) and b(X) are the numbers satisfying a
(X,Y) = a(Y,X) and  

 

 
(2.7) 

for all X,Y,Z. Then either a(X,Y) are all zero 
or all the b(X) are zero. Hence, by the above 

Lemma, we get from (2.6) and (2.7), either α

(Z) = 0 or S(X,Y) = 0. By the definition of 

(WRS)n, S(X,Y) ≠ 0. In this case, α(Z) = A(Z) 
+ B(Z) + B(Z) = 0. The proof is completed. 

 

THEOREM 2.2.  
 
In a conformally flat (WRS)n, the Ricci 

tensor of this manifold is Codazzi tensor. 
Proof. The Cotton tensor10 is defined in 

terms of the Ricci tensor S(X,Y) and the scalar  

curvature r of the metric as in the following 

form 
 

 
 

(2.8) 

A metric is conformally flat if and only if 

its Cotton tensor is identically zero.11 And we 
know that in this manifold, the scalar curva-

ture is constant. Thus, (2.8) reduces to 

From (2.9), the proof is clear. 

 

THEOREM 2.3.  
 
A conformally flat (WRS)n can not admit a 

quadratic conformal Killing tensor. 
Proof. In a conformally flat (WRS)n, we 

have the form (2.1). 
Taking the covariant derivative of (2.1) 

and remembering that the scalar curvature of 
this manifold is constant, we find 

(2.10) 
By putting (2.10) and (2.9) in (1.3), we ob-

tain 
 
 

 

(2.11) 
From (2.10) and (2.11), it can be seen the 

(2.12) 
If we take X = Y in (2.12), we can get 

Remembering that the scalar curvature of 

this manifold is constant, (2.13) reduces to 
a(Z) = 0 

Thus, we can say that a conformally flat 
(WRS)n can not admit a quadratic conformal 

Killing Ricci tensor. 
Now, we consider that our space is a per-

fect fluid. A perfect fluid is a spacetime (M,g) 
satisfying the Einstein’s equations 

where S(X,Y) and r denote the Ricci tensor 

and the scalar curvature, respectively. λ is the 
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cosmological constant and T(X,Y) is the en-

ergy-momentum tensor. 
We can state the following theorem: 
 

THEOREM 2.4.  

 
For a perfect fluid in a conformally flat 

(WRS)4, the energy-momentum tensor satisfy-
ing the Einstein’s equations with a cosmologi-
cal constant is a quasi-Einstein tensor. 

Proof. In a conformally flat (WRS)4, from 

(2.14) and (2.1), we find 

 
 
      

Thus, we find that 

where    
 

THEOREM 2.5.  
 
For a perfect fluid in a conformally flat 

(WRS)4, the energy-momentum tensor satisfy-
ing the Einstein’s equations with a cosmologi-

cal constant is a Codazzi tensor. 
Proof. By taking the covariant derivative of 

(2.15) and remembering that the scalar curva-

ture of this space is constant, we obtain that 

By changing the indices in (2.16), it can be 
found that 

Subtracting (2.17) from (2.16), we get 

              
 

(2.18) 
 
By using Theorem 2.2 and (2.18), we can 

easily seen that 

 
 

Thus, the proof is completed. 
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