

www.sciencevision.info

**Research Review** 

Sci Vis 11 (2), 61-71 April-June, 2011 ISSN (print) 0975-6175 ISSN (online) 2229-6026

# Bacillus sphaericus in the biological control of mosquito vector complex

# Vanlalhruaia<sup>1</sup>, N. Senthil Kumar<sup>2</sup> and G. Gurusubramanian<sup>1\*</sup>

Department of Zoology<sup>1</sup>, Department of Biotechnology<sup>2</sup>, Mizoram University, Aizawl 796 004, India

Received 17 April 2010 | Revised 11 May 2011 | Accepted 12 May 2011

# Abstract

Vector control is primordial and very essential means for controlling transmission of filariasis, malaria, Japanese encephalitis and dengue in human society. Over the last few decades, there is growing realization that alternate methods to synthetic chemical control needs to be studied and perfected. Several control strategies have been adopted to control diseases transmitted by mosquitoes. Mosquito control programs worldwide have been evaluating the feasibility to implement biological control strategies by using *Bacillus sphaericus (Bs)*. A comprehensive review cum research data is presented here to assess the potentiality of *Bs* in mosquito control operation. The major advantages of *Bs* are reduced application cost, safety to environment, human beings, animals and other nontarget organisms. This paper explores the importance of *Bs* bacterial toxin in controlling vector mosquitoes.

Key words: Bacillus sphaericus; mosquito; mode of action; toxicity; vector.

## INTRODUCTION

Mosquitoes transmit some of the world's worst life threatening and debilitating parasitic and viral diseases including malaria (*Anopheles*), filariasis (*Culex, Mansonia* and some *Anopheles* spp.,), Japanese encephalitis (*Culex tritaeniorhynchus*) and dengue and yellow fever (principally *Aedes aegypti*). In 2008, about 9.57 million people were affected by malaria in India.<sup>1</sup> Similarly, lymphatic filariasis caused by *Wuchereria bancrofti* which affects about 496 million people worldwide and the closely related *Brugia malayi* and *B. timori* affect 12.5 million people in south-east Asia. About 20 million people are infected every year by dengue virus transmitted by *Aedes* mosquitoes with about 24,000 deaths and 294 Japanese encephalitis (JE) cases reported in the year 2008.<sup>2</sup>

In Mizoram, out of 6081-10644 cases of incidence of malaria, *Plasmodium falciparum* was found to be the main causative agent [4189-9421 cases] and deaths [75-120 cases] due to malaria is showing a fluctuating trend in Mizoram during 2006-2010. State Health departments have intensified the efforts to

*Corresponding author:* G. Gurusubramanian Phone. +91-0389-2331021/2330754 E-mail: <u>gurus64@yahoo.com</u>

reduce malaria mortality by DDT spray, distributing mosquito nets treated with insecticide, establishing proper effective referral mechanism and treatment facilities for severe cases. Other vector-borne diseases namely filaria, kala-azar, JE, dengue and chikungunva are not endemic in the states.<sup>3,4</sup> However, the incidence of mosquito-borne diseases in the Mizoram region is increasing due to uncontrolled urbanization creating mosquitogenic conditions for the vector populations. Therefore, mosquito control forms an essential component for the management of mosquito-borne diseases. The use of chemical insecticides has been greatly impeded due to development of physiological resistance in the vectors, entrenched with stable malaria, particularly P. falciparum with growing drug resistance,<sup>5,6</sup> environmental pollution resulting in bio-amplification of food chain contamination and harmful effects on beneficial non-target animals. Therefore, the need of alternate, more effective and environment-friendly control agents became urgent.

The last decade has evidenced an increased interest in biological control agents. More number of biocontrol agents was screened for their efficacy, mammalian safety and environmental impact. Many organisms have been investigated as potential agents for vector mosquito control, including viruses, fungi, bacteria, protozoans, nematodes, invertebrate predators and fish. However, most of these agents were shown to be of little operational use, largely because of the difficulty in multiplying them in large quantities. Only, a few spore forming bacteria, copepods and fish have reached operational use and are undergoing extensive field trials. The discovery of a bacteria Bacillus sphaericus Neide (Bs) which is highly toxic to dipteran larvae have opened up the possibility of its use as potential biolarvicides in mosquito eradication programs the world over.7,8 Mosquitocidal bacteria currently represent a tiny fraction of the biopesticide market, which in turn is still only a small fraction of the annual worldwide pesticide market.

This paper focuses on the current approaches in relation to the general features, isolation, characterization, assessment of toxicity, formulation and use of *Bs* to tackle the rising emergence of mosquito vectors.

# **DISCOVERY OF BACILLUS SPHAERICUS (BS)**

The discovery of *Bs* which is highly toxic to dipteran larvae has opened up the possibility of its use as potential biolarvicide in mosquito eradication programs the world over.<sup>7</sup> Bs was discovered to have larvicidal activity against mosquito species9 and around 300 mosquitocidal strains have been described.<sup>10</sup> Strain 2362, isolated from Simulium in Nigeria,<sup>11</sup> is not toxic to black flies, but it is regarded as the most promising isolate for field use against mosquitoes.<sup>12</sup> Abbott Laboratories has recently formulated a commercial product (Vectolex) of Bs 2362 and has some advantages that its toxicity is not loss even in polluted water.<sup>13</sup> Bs has longer duration of efficacy due to persistence (present in the environment with its spore/crystal complex containing larval toxin) and recycling (replication and sporulation of this bacterium in mosquito cavaders) or their aqueous environment with subsequent larvicidal activity in the same habitat.12

# TAXONOMY OF BS

The name was coined by Neide in 1904. *Bs* is an aerobic, rod-shaped, endospore forming Gram positive soil bacterium, producing terminal spherical spores<sup>14</sup> belonging to the fam-

| Kingdom | : | Bacteria    | 11/2    |
|---------|---|-------------|---------|
| Phylum  | : | Firmicutes  | 1 for a |
| Class   | : | Bacilli     |         |
| Order   | : | Bacillales  |         |
| Family  | : | Bacillaceae | 120     |
| Genus   | : | Bacillus    |         |
| Species | : | sphaericus  | 11 m    |

Figure 1. B. sphaericus isolate from Mizoram.

ily Bacilliaceae, commonly isolated from the soil<sup>15</sup> also found in water and other substrates in nature<sup>13</sup>.

# PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERIZATION OF *Bs*

Many strains of Bs grow with acetate as the only major source of carbon which is available in soil and decaying plant material. Most of these strains also require biotin or thiamine, or both, for growth, and some are stimulated additionally by glutamate. Bs was found to grow poorly on glucose when provided as sole carbon source, which is a confirmatory biochemical test to identify the species (Table 1).<sup>14</sup> This bacterium was found to be unable to transport glucose or sucrose into the cell and it lacked glucokinase and hexokinase activities, phosphoglucoisomerase, phosphofructokinase and glucose-6-phosphate dehydrogenase. They are unable to ferment glucose, denitrify, or reduce nitrate to nitrite. Extracellular enzymes such as amylase, gelatinase, chitinase, and lecithinase are lacking.<sup>15</sup> It was found that Bs was able to grow on citrate and 5% NaCl, the cultured colony turned from red to purple which indicates oxidase activity, and the presence of bubbles in the colony indicates catalase activity. Moreover, all the other biochemical tests were found negative (Table 1). Bs can be identified by performing different biochemical tests (Table 1) and formation of terminal spherical spores, long rod, motile white/creamy mucoid colony (Fig. 1) and gram positive.<sup>16</sup>

# **ISOLATION OF BS FROM SOIL SAMPLES**

Soil samples were mixed in NaCl (0.85%) solution and submitted to thermal shock (80° C, 12 min; ice, 5 min). Aliquots of the solution were placed on plates in a nutrient agar medium (meat extract 3 g/l, peptone 5 g/l, and agar 15 g/l) and incubated at 30°C for 48 h. Colonies were identified by morphology of spores and by observation on a phase contrast

light microscope.<sup>17</sup> Medium A3 (*Bs* specific media) was used for isolation; it contained 5 g of sodium acetate trihydrate per liter (37 mM acetate) unless stated otherwise. Supplements (when added) are (milligrams per liter): L-glutamate, 1,000; thiamine, 10; biotin, 0.001 (Fig. 1).<sup>18</sup>

# Growth/culture media

*Bs* strains can be cultured in MBS<sup>19</sup> and NYSM media,<sup>20</sup> their composition (Table 2). Culture strains reached stationary growth phase at 12-14 hr, and completed sporulation at 24 hr (more than  $10^9$  cells per ml), with many of the sporangia lysed, liberating free spores with attached parasporal bodies. At 15°C, 20°C and 30°C, a sporulation yield of >95% was achieved. However, at 40°C *Bs* grew only vegetatively.

## **BIN AND MTX TOXINS**

The insecticidal activity of Bs is due to a binary toxin protein crystal (Btx/Bin) and mosquitocidal toxin (Mtx). Btx is absent during exponential-growth phase and forms during stage III of sporulation and is located next to spore within exosporium,<sup>14</sup> and Mtx is synthesized during exponential-phase growth and is proteolytically degraded as the cells enter the stationary phase. Many high-toxicity strains synthesize both Mtx and Btx toxin, while others synthesize only the Btx toxin. Low-toxicity strains synthesize only Mtx or neither toxin.<sup>21</sup> The crystal toxin is made up of two polypeptides with molecular weights of about 51 kDa (Bin B) and 42 kDa (Bin A). The different Mtx toxins have molecular masses of protein 100 kDa (Mtx1) and 32 and 36 kDa (Mtx2 and Mtx3) are expressed during the vegetative growth phase. Unlike the Bin toxin, Mtx do not form crystals and, therefore, are degraded quickly upon synthesis during the vegetative stage but are not as toxic as the Bin toxin.<sup>22</sup> The distribution of toxic gene in some strains of Bs is shown in

Table 1. Colony morphological, physiological and biochemical characters of *Bacillus sphaericus*<sup>a,b</sup>.

| Character or test                         | Bacillus sphaericus              |
|-------------------------------------------|----------------------------------|
| Shape (Gram staining)                     | Rods with terminal sphaerica     |
| Shape (Grain Stanning)                    | spores                           |
| Spore (Spore staining)                    | Positive (Oval)                  |
| Crystal staining                          | Positive (Oval)                  |
| Sporangium                                | swollen                          |
| Form                                      | Circular                         |
| Colour                                    | White                            |
| Colony Elevation                          | Flat                             |
| Colony Margin                             | Entire                           |
| Gram stain                                | Positive                         |
| Methyl Red                                | Negative                         |
| Growth on alucose                         | Negative                         |
| Growth on mannitol                        | Negative                         |
| Growth on citrate                         | Positive                         |
| Voques Proskauer                          | Negative                         |
| Esculin,                                  | Negative                         |
| Tryptophan                                | Negative                         |
| Indole                                    | Negative                         |
| anaerobic growth                          | Negative                         |
| Arginine dihydrolase                      | Negative                         |
| Starch hydrolysis                         | Negative                         |
| Growth with 7% Nacl                       | Negative                         |
| Casein                                    | Positive                         |
| Urease                                    | Positive                         |
| Oxidase                                   | Positive                         |
| Catalase                                  | Positive                         |
| Nitrate reduction                         | Negative                         |
| Mean population in                        | 18.6 ± 2.14-36.2 ± 3.54          |
| Mizoram soil                              |                                  |
| (CFU/0.5 gm/ml $\times$ 10 <sup>2</sup> ) |                                  |
| Vegetative cells (length -                | 4.35 ± 1.99-6.52 ± 2.98          |
| μm)                                       |                                  |
| Vegetative cells (Breadth                 | 2.44 ± 1.12-2.99 ± 1.35          |
| μm)                                       |                                  |
| Spores (length - µm)                      | 0.86 ± 0.05-2.78 ± 0.19          |
| Spores (Breadth - µm)                     | $0.19 \pm 0.01$ -1.56 $\pm 0.46$ |
| Crystals (length - µm)                    | 0.85 ± 1.02-3.15 ± 0.74          |
| Crystals (Breadth - µm)                   | 0.26 ± 0.51-3.48 ± 0.05          |
| Larvicidal toxicity                       |                                  |
| Culex quinquefasciatus                    | 85-98%                           |
| Anopheles stephensi                       | 75-80%                           |

<sup>a</sup>Soils samples (25 nos.) were collected from Tanhril, Lengpui, Chawnpui, Ramrikawn, Kanan, Vaivakawn, Dawrpui, Zonuam, Luangmual, Chawlhhmun, Zotlang, Tuivamit, Chanmari West. <sup>b</sup>Standard strain Bsp – 1593 was used as a reference.

Table 2. Composition of MBS and NYSM media.

| Component                                       | Concentration (g/l) |
|-------------------------------------------------|---------------------|
| MBS Medium                                      |                     |
| Tryptone                                        | 10.0                |
| Yeast extract                                   | 2.0                 |
| MgSO <sub>4</sub>                               | 0.3                 |
| CaCl <sub>2</sub>                               | 0.2                 |
| Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> | 0.02                |
| MnSO <sub>4</sub>                               | 0.02                |
| ZnSO <sub>4</sub>                               | 0.02                |
| NYSM Medium                                     |                     |
| Nutrient broth                                  | 8.0                 |
| Yeast extract                                   | 0.5                 |
| MgCl <sub>2</sub> .6H <sub>2</sub> O            | 0.2                 |
| MnCl <sub>2</sub> .4H <sub>2</sub> O            | 10.0 mg             |
| CaCl <sub>2</sub> .24H <sub>2</sub> O           | 0.1                 |

Table 3. Highly toxic strains contain both Mtx and Btx gene while less toxic strains lack both of them.<sup>21</sup>

# MODE OF ACTION

When the crystal is ingested by mosquito larvae, the protein crystal matrix (parasporal matrix) is dissolved in the anterior stomach, midgut proteinases and alkaline pH (pH 9-10) slowly convert protoxin 42 to a 39 kDa active form, and rapidly cleave protoxin 51 to a 43 kDa active form. Both proteins are needed for larval toxicity. The 51 kDa acts as a binding protein, enabling the entry of the 42 kDa protein into the midgut cells of the larval gut. It is modified by the larval gut proteases (consisting of chymotrypsin like and trypsin like enzymes, which remove six additional amino acids from the N terminus and approximately 20 amino acids from the C termi-

## Vanlalhruaia et al.

| Strain   | Origin    | Serotype        | Btx<br>gene | Mtx<br>gene | Strain  | Origin     | Serotype | Btx<br>gene | Mtx<br>gene |
|----------|-----------|-----------------|-------------|-------------|---------|------------|----------|-------------|-------------|
| K        | US        | 1a              | -           | +           | SSII-1  | India      | 2a2b     | -           | +           |
| Q        | US        | 1a              | -           | +           | 1889    | Israel     | 2a2b     | -           | +           |
| 9002     | Indonesia | 1a              | +           | +           | 1883    | Israel     | 2a2b     | -           | +           |
| 9201     | Indonesia | 1a              | +           | +           | 4b 1    | Nicaragua  | 2a2b     | -           | -           |
| 9301     | Indonesia | 1a              | +           | +           | LP24-4  | Singapore  | 2a2b     | -           | -           |
| BS 197   | Indonesia | 1a              | +           | +           | LP35-6  | Singapore  | 2a2b     | -           | -           |
| BDG2     | France    | 3               | -           | -           | 17N     | Caledonia  | 2a2b     | -           | $ND^{b}$    |
| SL 42    | US        | 3               | -           | -           | COK 1   | US         | 2a2b     | -           | -           |
| IAB 881  | Ghana     | 3               | +           | -           | K 8908  | Indonesia  | 2a2b     | -           | -           |
| LP1-G    | Singapore | 3               | +           | -           | 1593    | India      | 5a5b     | +           | +           |
| LP7-A    | Singapore | 3               | +           | -           | 1691    | ElSalvador | 5a5b     | +           | +           |
| LP12-AS  | Singapore | 3               | +           | -           | 2017.3  | Romania    | 5a5b     | +           | +           |
| LP14-8   | Singapore | 3               | +           | -           | 2362    | Nigeria    | 5a5b     | +           | +           |
| LP20-e   | Singapore | 3               | +           | -           | 2317.3  | Thailand   | 5a5b     | +           | +           |
| IAB 59   | Ghana     | 6               | +           | +           | 2500    | Thailand   | 5a5b     | +           | +           |
| BM1      | US        | 6               | +           | +           | BSE 18  | Scotland   | 5a5b     | +           | +           |
| S06 015  | Iraq      | 6               | -           | -           | COK 31  | Turkey     | 9a9c     | -           | +           |
| IAB 481  | Ghana     | 6               | +           | +           | COK 34  | Turkey     | 9a9c     | -           | +           |
| IAB620.1 | Ghana     | 6               | +           | +           | 2173    | India      | 26a62b   | -           | -           |
| IAB 460  | Ghana     | 6               | +           | +           | 2315    | Thailand   | 26a62b   | -           | -           |
| B55      | Indonesia | 6               | -           | -           | 2377    | Indonesia  | 26a62b   | -           | -           |
| 2279     | Sri Lanka | 25              | -           | -           | LB 29   | CZ         | 26a62b   | -           | -           |
| 2627     | Israel    | 25              | -           | -           | BM2     | US         | 26a62b   | -           | -           |
| IMR 6    | Malaysia  | 25              | -           | -           | S26 009 | US         | 26a62b   | -           | -           |
| 1602     | Canada    | 25              | -           | -           | 18W1.2  | Iraq       | 26a62b   | -           | -           |
| IMR 66.1 | Malaysia  | 48              | -           | -           | IAB 872 | Ghana      | 48       | +           | +           |
| Pr-1     | Scotland  | 48 <sup>c</sup> | +           | +           |         |            |          |             |             |

Table 3. Origin, serotype and distribution of Btx and Mtx genes of Bs strains.

ND<sup>b</sup>-Not done, 48<sup>c</sup>-Allocation based on pulsed-field gel electrophoresis of *sma*-I digested chromosomal DNA.

nus), resulting in a 54-fold increase in the toxicity of the protein. The mode of action of the binary toxin in the sequence of events is given as:

- (i) ingestion of spore/crystal toxin.
- (ii) toxin solubilization in the midgut.
- (iii) activation of the protoxin by protease into active toxin, i.e. 42 and 52 kDa of *Bs* to 39 and 43 kDa proteins.
- (iv) binding of active toxin to specific receptors present in the midgut brush border membrane; and
- (v) putative internalization of toxin and cell lysis (Fig. 2).<sup>23</sup>

*Bs* exerts its toxic effect in the midguts of mosquito larvae. Midgut damage starts as soon as 15 minutes after ingestion of the spore



Bacillus sphaericus in the biological control of mosquito vector complex

Figure 2. Mode of action of B. sphaericus protoxin.

Science Vision © 2011 MIPOGRASS. All rights reserved

Table 4. Mosquitocide proteins from *B. sphaericus*.

| Table 5. Different serotypes of B. sphaericus |
|-----------------------------------------------|
|-----------------------------------------------|

| Mol mass<br>(kDa) | No. of<br>Mol mass<br>(kDa) acids |     | Mol mass<br>of gut<br>processed<br>or<br>activated<br>toxin<br>(kDa) | Refer<br>ence |
|-------------------|-----------------------------------|-----|----------------------------------------------------------------------|---------------|
| 51.4              | 448                               | 51  | 43                                                                   | 14            |
| 41.9              | 370                               | 42  | 39                                                                   | 39            |
| 100.6             | 870                               | 100 | ?                                                                    | 40            |

-crystal complex. Binding of the binary toxin to midgut epithelium causes lipid membrane pores causing cellular osmotic disruption, swelling of mitochondrial and endoplasmic reticula and enlargement of vacuoles, followed by lysis of epithelial cells, midgut perforation, and the death of larvae.<sup>24</sup> Late damage to neural tissue and skeletal muscle are also reported. Mtx is synthesized during exponential-phase growth and has low toxicity.<sup>10</sup> Mtx1, Mtx2, and Mtx3 genes which share sequence homology with the family of bacterial adenosyl-ribosylating toxins. Mtx1protein (100 kDa) has ADP-ribosylating activity and is responsible for several morphological changes and mortality especially in *Culex* spp. while Mtx-2 is responsible for pore formation in larval midgut. Group II was further subdivided into groups IIA and IIB. Some strains of Group IIA can produce insecticidal protein, which are active against mosquito larvae. Mosquitocidal Bs strains are all found within DNA subgroup IIA and in association with nine serotypes (H1, H2, H3, H5, H6, H9, H25, H26 and H48). Bs is highly toxic to Culex and Anopheles spp., but less toxic to Aedes spp. Some strains show high toxicity to Culex and Anopheles spp. while others strains show high toxicity to Aedes spp. (Table 5).

Larvicidal activity is not present in all strains and those which are effective against larvae can be sub-divided according to their

| Туре | Serotype    | Toxicity |
|------|-------------|----------|
| 1    | 1a          | Less     |
|      | 3           | High     |
|      | 6           | High     |
|      | 48          | High     |
| 2    | 5a5b        | High     |
| 3    | 25          | High     |
| 4    | 3           | High     |
| -    | 26a62b,9a9c | Less     |

Table 6.  $LC_{50}$  of some of the highly toxic strains of *B. sphaericus* against 3<sup>rd</sup> instar larvae of *Anopheles* and *Culex* spp.

| Cturalin | LC50 (ppm) |       |  |  |
|----------|------------|-------|--|--|
| Strain   | Anopheles  | Culex |  |  |
| IB15     | 0.040      | 0.025 |  |  |
| S116     | 0.048      | 0.016 |  |  |
| IB19     | 0.048      | 0.018 |  |  |
| IB16     | 0.052      | 0.014 |  |  |
| S265     | 0.057      | 0.017 |  |  |
| 2362     | 0.057      | 0.065 |  |  |

degree of toxicity. All highly toxic strains contain a parasporal crystalline inclusion composed of a protein which is solubilized under alkaline conditions,<sup>14</sup> whereas strains with low toxicity lack a crystal. Bs strains are classified into 4 types depending on toxicity (presence or absence of Btx gene and Mtx gene). Analysis of DNA homology between strains indicated five major groups (I to V), each probably corresponding to a separate species (Table 5). Lethal concentration ( $LC_{50}$ ) ppm) of some of the highly toxic strains of Bs against third instar larvae of Anopheles and Culex spp.<sup>10</sup> are given in Table 6. The  $LC_{50}$ ranged between 0.040 and 0.057 ppm for Anopheles sp. and 0.014 and 0.065 ppm for *Culex* sp.

| Mosquito<br>species                                             | Habitat<br>(country)                                                                | Product used                                                                         | Effective<br>dose                             | Duration of<br>control                                     | Refe-<br>rence |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------------|
| An. gambiae and<br>C. quinquefasciatus                          | Irrigation ponds<br><i>(Anopheles),</i> sewage<br>ponds, gutters <i>(Culex)</i>     | Vectolex-G<br>(ABG-6185) granule                                                     | 10–30 kg/ha                                   | 5–7 days                                                   | 33             |
|                                                                 | Swamps and rice fields<br>in Suburban village<br>(Kinshasa, Zaire)                  | Same as above                                                                        | 10 kg/ha                                      | 7 days                                                     | 26             |
|                                                                 | Ponds (village,<br>Senegal)                                                         | Spherimos FC and<br>locally produced<br>granular form<br>compared in both<br>studies | 30 L/ha for FC,<br>30 kg/ha for<br>granules   | 15 days<br>(granules),<br>5 days (FC) for<br>Senegal study | 35             |
|                                                                 | Rain puddles<br>(Anopheles), cesspits<br>(Culex) Ouagadougou,<br>Burkina Faso)      | ABG 6185<br>granule                                                                  |                                               | 10 days for both<br>forms for<br>Burkina Faso<br>study     | 25             |
|                                                                 | Ditches, puddles and<br>naturally flooded areas<br>in periurban Maroua,<br>Cameroon | Suspension                                                                           | 10 kg/ha                                      | Not measured<br>(6 months)                                 | 27             |
| An. arabiensis                                                  | Natural pools, rice<br>fields, man-made<br>ditches-highlands,<br>Madagascar         | ABG 6185<br>granule                                                                  | 2.5–18 kg/ha                                  | Less than<br>5 days                                        | 36             |
| An. albimanus,<br>C. quinquefasciatus<br>and Ae. taeniorhynchus | Ponds, dams, river, and<br>water pits – Santa Cruz<br>del Norte, Cuba               | Liquid<br>formulation                                                                | 100 L/ha<br>(using backpack<br>sprayer/plane) | Up to 5 months<br>in water without<br>current              | 37             |
| An. albimanus<br>and others                                     | Rural Peru and<br>Ecuador                                                           | Vectobac TP<br>Bactimos WP                                                           | 1 kg/ha<br>2 kg/ha                            | - 7–10 days                                                | 38             |

Table 7. A review of field tests of *B. sphaericus* (Strain 2362) against mosquito vectors.

All field trials listed achieved 90-100% larval mortality within the first 48 hours after treatment.

A selection of recent field evaluations of *Bs* is summarized in Table 7 and includes several African studies. Skovmand and Sanogo<sup>25</sup> tested *Bs* granules against *A. gambiae* in rainwater puddles in urban and periurban Ouagadougou, Burkina Faso, and found that although the granules were effective in larger water bodies, the transient nature of the puddles, particularly during the rainy season, thwarted this effort. The *Bs* granules were found to remain active as long as 15 days in larger ponds outside a village in Senegal. In a

peri-urban village near Kinshasa, Zaire, Karch *et al.*<sup>26</sup> found that biweekly application of *Bs* granules to rice fields and swamps caused a 13.6% decrease in the average *A. gambiae* bites to humans. Although this reduction was too low to consider the *Bs* a successful control by itself, it suggests that *Bs* may be useful in some integrated control programs. In urban and periurban Maroua, Cameroon, Barbazan *et al.*<sup>27</sup> found that a large-scale *Bs* spray program targeting *C. quinquefasciatus* delayed the onset of the seasonal malaria transmission period by two months.

The laboratory and field efficacy of *Bs* against *A. stephensi*, *A. culicifacies*, and other anophelines as well as *C. quinquefasciatus* has been extensively tested in India.<sup>28</sup> *Bs* formulations were found to be effective against *A. stephensi* and persisted two to four weeks under field conditions.<sup>29</sup> A large-scale trial of weekly applications of *Bs* in Panaji City achieved significant reductions in both *A. stephensi* density and malaria incidence.<sup>30</sup> A comparison study of the control of *A. culicifacies* and *A. fluviatilis* in man-made water containers in India found that *Bs* was superior to *Bti* in cement tanks (*Bs* activity lasted up to six weeks), but *Bti* was more persistent (one week) in ponds.<sup>31</sup>

Formulations of Bs are manufactured in the United States, Canada, Russia, India and Cuba (and possibly other countries) and are commercially available. In addition to liquid and water-soluble powder formulations that are similar to many chemical insecticides, Bsproducts available or under development include slow-release granules and briquettes. In India, Balaraman and Hoti<sup>32</sup> found that local production cost of Bs in briquette formulation was US \$13.34 per batch (enough to treat 0.2 ha).

### CONCLUSION

Nature represents a formidable pool of bioactive compounds and is a strategic source for new and successful pesticidal products. It may be concluded that vector control operations for the prevention and control of vector borne -diseases must be carried out at a cost not exceeding what the communities concerned can afford to allocate for such a purpose. Further inputs for developing microbial control agents should therefore be diverted to look for new agents, which have not been encountered so far to improve Bs through bioengineering and rDNA techniques on a priority basis. The immediate challenges are (i) to obtain/develop highly toxic strains so as to reduce the bulk of the product and the manufacturing cost, (ii)

to develop a stable formulation capable of releasing the toxin in the larval feeding zone for prolonged periods which would obviate the high cost involved in frequent applications and also increase the operational efficiency and (iii) to engineer the toxin coding genes of Bs in alternative prokaryotic and/or eukaryotic microorganisms which can proliferate well in aquatic habitats and be readily available in the larval feeding zone. Finally, before declaring an agent as efficient, its activity should be thoroughly evaluated in proper field tests and not in simulated field tests or field conditions. Vector control operations must also be based on the ecological and population dynamics characteristics of vectors concerned. Studies should be pursued towards developing effective and environment friendly "green-technologies."

#### **ACKNOWLEDGEMENTS**

This work is supported by the University Grants Commission, New Delhi (UGC Reference No. F. No. 34-452/2008 (SR) dt. 30 Dec. 2008) and Directorate of Health Services, Government of Mizoram, Mizoram (D 12030/1/2003 – DHS (M)/21 dt. 06 March 2009. The authors are also thankful to DBT, New Delhi, for providing Bioinformatics Facility to Mizoram University.

### REFERENCES

- WHO (2009). World malaria report. World Health Organization, Geneva, Switzerland. [www.who.int/malaria/ world\_malaria\_report\_2009/en/index.html.]
- WHO (2010). World Health Statistics 2010. WHO Press, World Health Organization, Geneva, Switzerland, pp. 1-168.
- NRHM MIS report (2009). Mizoram state report, April 2009, pp. 1-31. [www.mohfw.nic.in/NRHM/Documents/ NE\_Reports/Mizoram\_Report.pdf]
- Health and Family Welfare Department of Mizoram (2010). State vector borne diseases control programme (malaria). Health and Family welfare department, Mizoram. [http://healthmizoram.nic.in/ malaria\_programme.htm.]

- Snow RW, Guerra CA, Noor AM, Myint HY & Hay SI (2005). The global distribution of clinical episodes of *Plasmodium falciparum* malaria. *Nature*, **434**, 214-217.
- Kumar A, Valecha N, Jain T & Dash AP (2007). Burden of malaria in India: retrospective and prospective view. *Am J Trop Med Hyg*, **77**, 69-78.
- Poopathi S,Tyagi BK (2006). The challenge of mosquito control strategies: from primordial to molecular approaches. *Biotech Mol Biol Rev*, 1, 51-65.
- Porter AG, Davidson EW & Liu JW (1993). Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. *Microbiol Rev*, 57, 838-861.
- Kellan W, Clark T, Windergren J, Ho B & Rogoff M (1965). Bacillus sphaericus Neide as a pathogen of mosquitoes. J Invertebr Pathol, 7, 442-448.
- Monnerat RG, Batista AC, Telles de Medeiros P, Soares Martins E, Melatti VM & Praça LB (2007). Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biol Control, 41, 291-295.
- Weiser J (1984). A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from Northern Nigeria. Zbl Mikrobiol, 139, 57-60.
- WHO (1985). Informal consultation on the development of *Bacillus sphaericus* as a microbial larvicide. TDR/ BCV/85.3.
- Mulla MS, Rodcharoen W, Kong W, Tawatsin A, Phan P & Thavara U (1997). Field trials with *Bacillus sphaericus* formulations against polluted water mosquitoes in a suburban area of Bangkok, Thailand. J Am Mosq Control Assoc, 13, 297-304.
- Baumann P, Clark MA, Baumann L & Broadwell AH (1991). Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxin. Microbiol Rev, 55, 425-436.
- Hu X, Fan WB, Liu H, Zheng D, Li Q, Dong W, Yan J, Gao M, Berry C & Yuani Z (2008). Complete genome sequence of the mosquitocidal bacterium *Bacillus sphaericus* C3-41 and comparison with those of closely related *Bacillus* species. J Bacteriol, 8, 2892-2902.
- Payne JM & Davidson EW (1984). Insecticidal activity of the crystalline parasporal inclusions and other components of *Bacillus sphaericus* 1593 spore complex. *J Invertebr Pathol*, **43**, 383-388.
- Litaiff EC, Tadei WP, Porto JIR & Oliveira IMA (2008). Analysis of toxicity on *Bacillus sphaericus* from Amazonian soils to *Anopheles darlingi* and *Culex quinquefasciatus* larvae. *Acta Amazon*, **38**, 255-262.
- 18. Massie J, Roberts J & White PJ (1985). Selective isolation

of *Bacillus sphaericus* from soil by use of acetate as the only major source of carbon. *Appl Environ Biochem*, **49**, 1478-1481.

- Kalfon A, Charles JF, Bourgouin C & de Barjac H (1984). Sporulation of *Bacillus sphaericus* 2297: an electron microscope study of crystal like inclusion, biogenesis and toxicity to mosquito larvae. *J Gen Microbiol*, **130**, 893-900.
- Myers M & Yousten AA (1978). Toxic activity of *Bacillus sphaericus* SSII-1 for mosquito larvae. *Infect Immun*, **19**, 1047-1053.
- Priest FG, Zahner V & Carter PE (1997). Distribution and characterization of mosquitocidal toxin genes in some strains of *Bacillus sphaericus*. *Appl Environ Microbiol*, **63**, 1195-1198.
- Delecluse A, Rosso ML, Ragni A (1995). Cloning and expression of a novel toxin gene from *Bacillus thuringiensis* susp. *Jegathesan* encoding a highly mosquitocidal protein. *Appl Environ Microbiol*, **61**, 4230-4235.
- Nielsen-LeRoux C & Charles JF (1992). Binding of *Bacillus sphaericus* binary toxin to a specific receptor on midgut brush border membranes from mosquito larvae. *Eur J Biochem*, **210**, 585-590.
- Klein D, Uspensky I & Braun S (2002). Tightly bound binary toxin in the cell wall of *Bacillus sphaericus*. *Appl Envi*ron Microbiol, **68**, 3300-3307.
- 25. Skovmand O & Sanogo E (1999). Experimental formulation of *Bacillus sphaericus* and *B. thuringiensis israelensis* against *Culex quinquefasciatus* and *Anopheles gambiae* (Diptera: Culicidae) in Burkina Faso. J Med Ent, **36**, 62-67.
- 26. Karch S, Asidi N, Manzambi ZM & Salaun JJ (1992). Efficacy of *Bacillus sphaericus* against the malaria vector *Anopheles gambiae* and other mosquitoes in swamps and rice fields in Zaire. J Am Mosq Control Assoc, 8, 376-380.
- Barbazan P, Baldet T, Darriet F, Escaffre H, Haman Djoda D & Hougard JM (1998). Impact of treatments with *Bacillus sphaericus* on *Anopheles* populations and the transmission of malaria in Maroua, a large city in the savannah region of Cameroon. J Am Mosq Control Assoc, 14, 33-39.
- Sharma SN, Sharma T & Prasad H (1998). Impact of Spherix (*Bacillus sphaericus* B-101, serotype H5a, 5b) spraying on the control of mosquito breeding in rural areas of Farrukhabad District, Uttar Pradesh. *Indian J Malariol*, **35**, 185-96.
- Mittal PK, Adak T, Batra CP & Sharma VP (1993). Laboratory and field evaluation of Spherix, a formulation of Bacillus sphaericus (B-101) to control breeding of Anopheles stephensi and Culex quinquefasciatus. Indian J Malariol, 30, 81-89.
- 30. Kumar A, Sharma VP, Sumodan PK, Thavaselvam D &

#### Vanlalhruaia et al.

Kamat RH (1994). Malaria control utilizing *Bacillus* sphaericus against *Anopheles stephensi* in Panaji, Goa. J Am Mosq Control Assoc, **10**, 534-539.

- Shukla RP, Kohli VK & Ojha VP (1997). Larvicidal efficacy of *Bacillus sphaericus* H-5a, 5b and *B. thuringiensis* var. *israelensis* H-14 against malaria vectors in Bhabar area, District Naini Tal, U.P. *Indian J Malariol*, **34**, 208-212.
- Balaraman K & Hoti SL (1987). Comparative cost of mosquito control with larvicidal bacilli and insecticides. *Indian* J. Malariol, 24, 131-134.
- 33. Karch S, Manzambi ZA & Salaun JJ (1991). Field trials with Vectolex<sup>™</sup> (Bacillus sphaericus) and Vectobac<sup>™</sup> (Bacillus thuringiensis H-14) against Anopheles gambiae and Culex quinquefasciatus breeding in Zaire. J Am Mosq Control Assoc, 7, 176-179.
- 34. Skovmand O & Baudin S (1997). Efficacy of a granular formulation of *Bacillus sphaericus* against *Culex quinque-fasciatus* and *Anopheles gambiae* in West African countries. *J Vector Ecol*, **22**, 43-51.
- 35. Romi R, Ravoniharimelina B, Ramiakajato M & Majori G

(1993). Field trials of *Bacillus thuringiensis* H-14 and *Bacillus sphaericus* (Strain 2362) formulations against *Anopheles arabiensis* in the central highlands of Madagascar. *J Am Mosq Control Assoc*, **9**, 325-329.

- 36. Montero LG, Diaz PM, Marrero FA & Castillo GFA (1991).The pilot project results of applications of the biolarvicide *Bacillus sphaericus* 2362 on mosquito breeding grounds of the town of Santa Cruz del Norte (La Habana Province). *Rev Cubana Med Trop*, **43**, 39-44.
- Kroeger A, Horstick O, Riedl C, Kaiser A & Becker N (1995). The potential for malaria control with the biological larvicide *Bacillus thurinsiensis israelensis* (Bti) in Peru and Ecuador. *Acta Trop*, **60**, 47-57.
- Hindley J & Berry C (1987). Identification, cloning and sequence analysis of the *sphaericus* 1593 41.9 kD larvicidal toxin gene. *Mol Microbiol*, 1, 187-194.
- Thanabalu T, Hindley J, Jackson-Yap J & Berry C (1991). Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from *Bacillus sphaericus* SSII-1. *J Bacteriol*, **173**, 2776-2785.