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The known van der Waals and Berthelot equations of state do-not precisely 

describe the thermodynamic properties of fluids. To improve its accuracy, the 

attractive term of the van der Waals equation of state has been modified in six 

different ways. These generalized equations of state have been employed to 

determine the spinodal (thermodynamic stability boundary) and the 

thermodynamic limit of superheat of liquid lead. The equations of state are 

rewritten in reduced form, from which follows the law of corresponding states. The 

appropriate modification of the attractive term of the equation of state yielding the 

value of thermodynamic limit of superheat agreeing with the experimental value 

for lead has been established. It has been established that liquid lead can be 

superheated, under rapid heating, up to a temperature 4565 K. That is, liquid lead 

can be superheated to 2544 K above the normal boiling temperature. At the 

thermodynamic limit of superheat, the volume of the liquid lead is 4.0095 × 10
-5

 

m
3 
mol

-1
.  This fact is to be taken into account when liquid lead is subjected to 

rapid heating. 
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statistical-mechanical and thermodynamical 

approaches to study the thermodynamic properties 

of substance is the development of equation of state 

for substances. To improve the accuracy, the known 

equations of state are generalized
 
by modifying the 

attractive terms.
10-19

  

The physical properties of lead are melting 

temperature Tm = 600.6 K, boiling temperature Tb = 

2021 K, critical temperature Tc = 5000 K, critical 

pressure Pc = 180 MPa, critical density Dc = 3250 

Kgm
-3

, critical volume Vc = 6.3754 × 10
-5

m
3
mol

-1
, 

Introduction 
 

The study of the thermodynamic properties of 

lead is of scientific and technological significance. 

The experimental studies on the thermodynamic 

properties of the lead in the metastable region, 

encounter severe difficulties. Thus, arises a need for 

theoretical studies on the thermodynamic properties 

of lead in the metastable region. In recent years, 

several studies have been made on the 

thermodynamic properties of lead.
1-9

 This fact 

manifested the relevance of the study of the 

thermodynamic properties of lead. One of the 
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critical compressibility Zc = 0.2761 and thermal 

conductivity σT = 47.7 Wm
-1

K
-1

. This work is aimed at 

developing a new equation of state for lead in the 

metastable state. In the technological processes such 

as laser ablation, wire explosion and cooling the fast-

neutron nuclear reactors, lead undergoes rapid 

heating. This results in the superheating of liquid 

lead to temperatures above its equilibrium boiling 

temperature. However, there is a limit in temperature 

up to which the liquid lead can be superheated at a 

given pressure. The temperature of superheat, under 

zero pressure, is the thermodynamic limit of 

superheat. The superheated lead is in a metastable 

state which on the phase diagram lies between the 

binodal and the spinodal. The performance 

characteristics of the modified equations of state in 

describing the properties of lead in the metastable 

state are investigated. In this respect, the known van 

der Waals and Berthelot equations of state are 

modified by incorporating new parameters in their 

attractive terms.   

 

Generalized Equations of State 
 

The known van der Waals and Berthelot equation 

of state do not precisely describe the 

thermodynamic properties of fluids.
20,21 

This may be 

attributed to the inaccurate attractive terms in these 

equations of state. Hence, new equation of state is 

proposed by introducing new parameters in the 

attractive term. Such modified equations of state for 

one mole of substance have the form: 

 

(1) 

 

 

Where P = Pressure; V = Molar volume; T = 

Temperature; R = Universal gas constant; a, b, c, m 

and n are substance-specific parameters. Four 

special cases of Eq. (1) with m = 0, m = 1, m = ½ 

and c=b are also considered. The parameters a, b, c, 

m and n of the modified Berthelot equation of state 

are determined through the critical-point 

parameters. 

 
The vapor-liquid critical point conditions are 
 

 

(2) 

 

 

Application of the critical-point conditions to the 

equation of state given by Eq. (1) gives the critical 

volume, critical temperature and critical pressure as 

 

(3) 

 

 

 

(4) 

 

(5) 

 

 

When Eqs. (3)-(5) are taken into account, we get the 

critical compressibility factor as 

 

(6) 

 

 

Equations-of–state Parameters 
 

Eq. (6) may be rearranged as      

 

(7) 

 
The parameters a, b, c and n of the modified 

Berthelot equation of state are determined through 

the critical–point parameters. Eq. (7) is a quadratic 

equation with respect to the parameter n. The 

physically meaningful solution (i.e. n>0) of Eq. (7) is 

 

 

(8) 

 

 

Eq. (3) may be rearranged as    

 

(9) 

 

From Eqs. (3)-(6), we get the expressions for the 

equation-of-state parameters as  

 

(10) 

 

 

(11) 

 

 

(12) 

 

 

 

Using Eqs. (8), (10), (11) and (12) the parameters 

a, b, c and n of the modified Berthelot equation of 

state can be determined. Moreover, using the 

Riedel’s parameter, the value of the parameter m can 

be determined. 

The modified equation of state may be rewritten 

in terms of the reduced variables as 
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Riedel’s parameter is defined as 

 

 

(14) 

 

From Eqs. (13) and (14), we get 

 

(15) 

 

 

Eq. (15) may be rearranged to get the expression 

for m as  

 

(16) 

 

 

The reduced equation of state given by Eq. (13) 

represents the four-parameter law of corresponding 

states with the thermodynamic similarity parameters 

b, c, m and n. That is, substances obeying the 

modified Berthelot equation of state, with the same 

values of the parameters b, c, m and n are 

thermodynamically similar. That is, such substances 

have similar intermolecular force characteristics. 

 

Spinodal 
 

The knowledge of the spinodal, a characteristic 

curve on the phase diagram, is essential in 

describing the properties of a substance in the 

critical and in the metastable states. Fig 1 

schematically depicts
22

 the vapor-liquid equilibrium 

curve (binodal) and the stability boundary curve 

(spinodal) of substances. 

 

The spinodal defines the thermodynamic stability 

boundary of the phase envelope. The spinodal 

encloses the region of unstable states for which the 

isothermal elasticity is negative. For stable states, the 

isothermal elasticity is positive. In the region 

between the binodal and the spinodal on the phase 

diagram, the liquid is in the metastable state. 

Considering the scientific and technological 

significance, in recent years, several studies have 

been made on the behavior of the superheated 

metastable fluids.
23-32

  

The spinodal is defined by the condition: 

 

 

(17) 

 

 

Applying the condition given by Eq. (17) to Eq. 

(13), we get the equation of spinodal in T
*
, V

*
 

coordinates as  

(18) 

Substituting Eq. (18) into Eq. (13), we get the 

equations of spinodal in P*, V* coordinates as 

 

 

(19) 

With a decrease in pressure, the superheat of 

substances increases. Under zero pressure, the 

substance may be superheated to a maximum 

temperature above its normal boiling temperature. 

This is known as the thermodynamic limit of 

superheating. 

Applying the condition P = 0 to Eq. (19), we get 

the expression for the reduced volume V
*
s,0 of the 

liquid at thermodynamic limit of superheat as 

    
(20) 

 
 

Substituting Eq. (20) into Eq. (18), we get 

 

 

(21) 

 

 
That is, thermodynamic limit of superheat 

depends only on the parameter n but not on the 

parameters a, b, c and m of the modified of 

Berthelot equation of state. 

 

Determination of Equation-of-state 

Parameters 
 

The parameters of the modified Berthelot 

equation of state can be determined using any 

characteristic point on the phase diagram. However, 
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Figure 1 | Schematic phase diagram of substances.
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the use of the critical-point parameters in 

determining the equation of state parameters will 

improve the accuracy of the equation of state in 

describing the high-temperature properties of 

substances. The parameter n for lead is determined 

through the Eq. (8) using experimental data on the 

critical compressibility factor.
33-35

 The obtained 

values of n are presented in Table 1. The parameter 

b for lead is determined through the Eq. (11). The 

parameters a, c and m are determined through Eqs. 

(10), (12) and (16), respectively, using experimental 

data on the critical-point parameters along with 

values of n. The obtained values of a, b, c and n are 

presented in Table 1.  

 

Determination of Spinodal 
 

Considering the values of n (Table 1) for lead, the 

spinodal is determined by Eqs. (18) and (19). The 

obtained spinodal-parameters are presented in 

Table 2. 

These spinodal-parameters define the stability 

boundary of liquid lead in the phase diagram shown 

in Fig. (2). 

            EoS a  

Jkg-1K-1m3mol-1 
b  

10-5 m3mol-1 

c  

10-5 m3mol-1 

m n  

nV

a

bV

RT
P −

−
=  54.3097 

 

1.6433 ---- ---- 1.6945 

nTV

a

bV

RT
P −

−
=  271548.44 

 

1.6433 ---- ---- 1.6945 

nmVT

a

bV

RT
P −

−
=  21965.2395 

 

1.6433 ---- 0.7048 1.6945 

nVT

a

bV

RT
P −

−
=  3840.2749 

 

1.6433 ---- ---- 1.6945 

nbV

a

bV

RT
P

)( +
−

−
=  15.6436 

 

1.1060 ---- ---- 1.8396 

ncV

a

bV

RT
P

)( +
−

−
=  1110 

 

3.3427 -2.8024 ---- 1.3563 

 

Table 1 | Parameters of generalized van der Waals and Berthelot equations of state. 

Table 2 | Spinodal of liquid lead. 

Figure 2 | Spinodal of liquid lead. 

 

Ts* Ps*  

m = 0 m = 1 m = m m = ½ c = b c = c 

0.6895 

0.8420 

0.9281 

0.9736 

0.9944 

1 

-2.2480 

-0.3081 

0.5010 

0.8412 

0.9703 

1 

-2.7072 

-0.3358 

0.5200 

0.8525 

0.9730 

1 

-2.6214 

-0.3308 

0.5167 

0.8505 

0.9726 

1 

- 2.5445 

-0.3263 

0.5136 

0.8487 

0.9721 

1 

-1.0157 

0.1047 

0.6337 

0.8772 

0.9761 

1 

-2.66E-01 

-1.32E-01 

-4.14E-02 

2.10E-02 

6.44E-02 

9.46E-02 
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Spinodal of Liquid Lead 
 

The volume at the thermodynamic limit of 

superheat for lead is determined through Eq. (20) 

using the values of the parameter n (Table 1). The 

obtained values are presented in (Table 3). The 

thermodynamic limit of superheat for lead is 

determined through Eq. (21) using the values of the 

parameter n (Table 1). The obtained values are 

presented in (Table 3). Below the thermodynamic 

limit of superheat, heterogeneous nucleation 

prevails. And, above the thermodynamic limit of 

superheat, homogeneous nucleation will prevail 

resulting in the explosive boiling of fluids. 

 

Results and Discussion 
 

Several modified van der Waals-Berthelot 

equations of state have been employed to calculate 

the spinodal, and thermodynamic limit of superheat 

of lead. The performance characteristics of these 

equations of state in evaluating the spinodal, and 

the thermodynamic limit of superheat of liquid lead 

have been studied. It has been established that the 

equation of state with an attractive term of 

temperature dependence T
–1/2

more accurately 

describes the superheating limit of liquid lead. That 

is, the equation of state with m = 
1
/2 gives the 

thermodynamic limit of superheat of liquid lead of 

about 0.9Tc which agrees with the experimental 

value for liquid lead.
36

 The parameters of the 

modified van der Waals-Berthelot equations of state 

are expressed in terms of the critical-point 

parameters of liquid lead.  

It has been established that the four characteristic 

properties of the fluids, viz. the critical pressure, the 

critical volume, the critical temperature and the 

Riedel’s parameter characterize parameters of the 

modified van der Waals-Berthelot equations of state. 

It has been established that liquid lead can be 

superheated, under rapid heating, up to a 

temperature 4565 K. That is, liquid lead can be 

superheated to 2544 K above the normal boiling 

temperature. This fact is to be taken into account 

when liquid lead is subjected to rapid heating. 

 

Conclusion 
 

As seen from Table 1, the value of the parameter 

n is greater than that of the parameter m.  That is, 

the attractive term in the generalized Berthelot 

equation of state has a stronger dependence on 

volume than on the temperature. The spinodal 

(stability boundary on the phase diagram) and the 

thermodynamic limit of superheat of the liquid lead 

have been determined using an appropriately 

modified van der Waals-Berthelot equation of state. 

The spinodal of liquid lead is presented in Table 2, 

and is plotted in Figure 2. As seen from Table 2, the 

liquid lead, under zero pressure, can be superheated 

to a temperature 0.9130 Tc.  That is, liquid lead can 

be superheated to 2544 K above the normal boiling 

temperature. At the thermodynamic limit of 

superheat, the volume of the liquid lead is 4.0095 × 

10
-5

 m
3
mol

-1
. This fact is to be taken into account 

when liquid lead is subjected to rapid heating. 
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