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The effect of mechanical relaxation time in the elastic wave propagation in elastic 

materials with voids is investigated.  The phase speed and the attenuation 

coefficients are obtained and observed the effect of mechanical relaxation time. 

The phenomenon of reflection of elastic waves due to the incident waves from a 

plane boundary of elastic materials with voids is studied. The amplitude and 

energy ratios of the reflected waves are obtained. Numerically these ratios, phase 

speeds and the corresponding attenuation coefficients are computed for a 

particular model and the effect of mechanical relaxation time is discussed. 
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spectrum and completeness of the eigenfunctions.
4
 

Antonio Scalia studied and derived the jump 

conditions and growth equation which govern the 

propagation of shock waves in visco-elastic materials 

with voids.
5
 Adina Chirila introduced the Caputo 

fractional derivatives and applied for the solutions of 

problems on micropolar thermoelasticity and he 

incorporated the mechanical relaxation time in the 

context of constitutive and field equations.
6
 Scalia 

and Sumbatyan studied a static contact problem 

about a rigid punch on the free surface of linear 

porous elastic half-plane.
7
 They reduce the contact 

problem to a singular integral equation and 

described a direct numerical co-location technique 

to solve the problems.  

The reflection of incident plane waves from a free 

boundary of porous elastic half-space was studied 

by Ciarletta and Sumbatyan.
8
 They have shown that 

only the transverse wave can propagate on the solid 

half-space without attenuation. The reflection and 

transmission due to the incident plane longitudinal 

waves at a plane interface between two elastic media 

with voids is investigated by Tomar and Singh.
9
 They 

found that the presences of voids are significant on 

Introduction 
 

Cowin and Nunziato presented a theory of linear 

elastic materials with voids.
 1
 In this theory, the 

change in voids volume fraction and strain are taken 

as an independent kinematic variable. In fact, this 

theory is one of the generalisations of classical 

elasticity. The intended application of the theory of 

elastic materials with voids are found in geological 

materials like rocks, soils and many manufactured 

materials available in our environment such as wood, 

clothes, paper etc. Puri and Cowin analyzed the 

behaviour of plane harmonic waves in linear elastic 

materials with voids.
2
 They presented the existence 

of two longitudinal waves in this theory, both these 

waves are attenuate in their direction of 

propagation. The linear theory of homogeneous and 

isotropic materials with voids and initial boundary 

value problem in terms of stress and volume fraction 

fields is formulated by Chandrasekhariah.
3
  

Iovane and Nasedkin investigated the eigenvalue 

problems in elastic bodies with voids in contact with 

massive rigid plane punches using Cowin-Nunziato 

theory and they proved the discreteness of the 
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reflection and transmission coefficients. Later, Singh 

and Tomar
10

 investigated the reflection and 

refraction of transverse wave incident obliquely at a 

plane interface between two porous elastic half 

spaces in welded contact. Chanrasekhariah 

investigated Rayleigh waves and Rayleigh-Lamb 

wave propagating at a plane material boundary of 

an elastic half-space containing a distribution of 

voids.
11,12

 He found that the waves are generally 

dispersive and the voids have no influence on the 

motion of Rayleigh wave for incompressible body.  

Abo-Dahab and Singh studied the influence of 

rotation, magnetic field, voids and initial stress on 

the reflection of P- waves in thermoelasticity without 

energy dissipation.
13

 Dey et al. analysed the 

possibility of surface torsion wave in an elastic half-

space with void pores, they found two types of 

surface waves, one is depending only on the 

parameters associated with change in void volume 

pores whereas the other depend on elastic constants 

of the half-spaces as well as on change of void 

volume parameters.
14

 Chirita and Ghiba presented 

inhomogeneous plane wave solution within the 

context of linear theory of poroelastic materials.
15

 

The remarkable waves and vibrations are found in 

Achenbach,
16

 Straughan,
17

 Lianngenga,
18,19

 

Lianngenga et al.,
20,21

 and Ciarletta and Iesan.
22

 

In this paper we incorporate the idea of Chirila
6
 

into the theory of Cowin-Nunziato.
1
 Then, the effects 

of mechanical relaxation time in the propagations of 

elastic waves are investigated. The phase speed and 

attenuation coefficients of plane waves are obtained. 

And the amplitude and energy ratios of the reflected 

waves are found with the appropriate boundary 

conditions. Numerically and analytically the phase 

speeds, attenuation coefficients, amplitude and 

energy ratios are computed for a particular materials 

model. 

Basic Equations and Solutions 

 

Following Adina Chirila6 and Cowin and Nunziato,1 

the constitutive equations including mechanical 

relaxation time for homogeneous isotropic elastic 

materials with voids in the absence of body forces can 

be written as 

tij = λδij DEkl + 2μDEkl + βδijϕ  ............................... (1) 

g = −bϕ − ξϕ − βDEkk   ............................................. (2) 

hi = αϕ,i    .........................................................................(3) 

where (tij , hi , g) are components of stress tensor, 

equilibrated stress vector, intrinsic equilibrated body 

force respectively;  (λ, μ) are lame’s 

constants; (α, β, ξ, b) are voids parameters; Ekl =
1

2
(ui,j + uj,i); ui(xi , t) − components of displacement 

and ϕ(xi , t) − voids volume fraction; (xi , t) are 

components of spatial position vector in Cartesian 

coordinates system x1 , x2, x3 and time variable 

respectively; τ − mechanical relaxation time, D = 1 +

τrDt
r  and Dt

r  is a fractional order derivative with 

respect to time; the superpose dot implies time 

derivatives and (),i = ∂()/ ∂xi . 

where (tij , hi , g) are components of stress tensor, 

equilibrated stress vector, intrinsic equilibrated body 

force respectively;  (λ, μ) are lame’s 

constants; (α, β, ξ, b) are voids parameters; Ekl =
1

2
(ui,j + uj,i); ui(xi , t) − components of displacement 

and ϕ(xi , t) − voids volume fraction; (xi , t) are 

components of spatial position vector in Cartesian 

coordinates system x1 , x2, x3 and time variable 

respectively; τ − mechanical relaxation time, D = 1 +

τrDt
r  and Dt

r  is a fractional order derivative with 

respect to time; the superpose dot implies time 

derivatives and (),i = ∂()/ ∂xi . 

For simplicity, we shall take r = 1 throughout the 

article, and then the fractional order derivative Dt
r  will 

transform into 
∂

∂t
 and D = 1 + τ

∂

∂t
. 

The field equation for homogeneous isotropic 

elastic materials with the mechanical relaxation time 

in the absence of body forces are given as 

μD∇2𝐮 +  λ + μ D∇∇.𝐮 + β∇ϕ = ρ𝐮  .................... (4) 

α∇2ϕ − ξϕ − bϕ − βD∇.𝐮 = ρkϕ  ............................ (5) 

where ∇=  ∂/ ∂x1, ∂/ ∂x2 ,∂/ ∂x3 . 

The constitutive and the field equation may satisfy 

the following conditions (see Cowin-Nunziato1) 

𝜇,𝛼, 𝜉 ≥ 0; 3𝜆 + 2𝜇 ≥ 0; (3𝜆 + 2𝜇)𝜉 ≥ 12𝛽2 

Using Helmholtz decomposition theorem, we can 

split the displacement vector (𝐮) into the scalar and 

vector potential as 

𝐮 = ∇p + ∇ × 𝐪,∇.𝐪 = 0 ........................... (6) 

where p is scalar potential of 𝐮 and 𝐪 is vector 

potential of 𝐮. 

Using Helmholtz decomposition theorem (6) into 

the field equation (4)-(5), we obtain 

μD∇2p +  λ + μ D∇2p + βϕ = ρp  ........................... (7) 

α∇2ϕ − ξϕ − bϕ − βD∇2p = ρkϕ  ............................. (8) 

μD∇2q = ρq with𝐪 = (0, q, 0) .................................... (9) 

In order to discuss the wave propagation in linear 

homogeneous elastic materials with voids, we 

consider the plane harmonic travelling wave with 

 p,ϕ, q =  p0 ,ϕ0, q0 e
−iωt .................................... (10) 

where i =  −1,ω (= kc) is angular frequency, k − is 

wavenumber and c − phase speed. 

Applying equation (10) into the equations (7)-(9) 

we get 

 c1
2D∇2 + ω2 p0 + c2

2ϕ0 = 0 ............................. (11) 

c3
2D∇2p0 −  c4

2∇2 + c5
2 ϕ0 = 0 .......................... (12) 

 μD∇2 + ρω2 q0 = 0 ................................... (13) 

where c1
2 =

λ+μ

ρ
, c2

2 =
β

ρ
, c3

2 =
β

ρk
, c4

2 =
α

ρk
, c5

2 =
iωb−ξ

ρk
+

ω2 . 

Equations (11) and (12) are couple inp0 and ϕ0, 

they represent coupled longitudinal waves while 

equation (13) represent shear wave. On solving 
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Equations (11) and (12) are couple inp0 and ϕ0, 

they represent coupled longitudinal waves while 

equation (13) represent shear wave. On solving 

equations (11) and (12) for the non-trivial solutions, 

we obtain the frequency equation for coupled 

longitudinal wave as 

A∇4 + ω2B∇2 + ω4C = 0 ................................... (14) 

where A = c1
2c4

2D, B = c1
2c5

2D/ω2  + c2
2c5

2/ω2 + c4
2 , C =

c5
2/ω2 . 

Following Helmholtz equation 

 ∇2 + ki  p0 ,ϕ0, q0 = 0, ki =
ω

ci
T ................... (15) 

Thus, using Equation (15) into (14) we obtain the 

solutions of the two coupled longitudinal waves in 

terms of wave number as 

k1,2
2 =

ω2 B± B2−4AC  

2A
 ............................................ (16) 

Similarly, equation (13) gives the solution for shear 

wave as 

k3
2 =

ρω2

μD
 ........................................................................ (17) 

Since the quadratic equation (14) and linear 

equation (13) has complex coefficients, their roots will 

be complex value. Thus, the coupled longitudinal and 

shear wave are attenuating in nature. The phase 

speeds (ci) and attenuation coefficients (Ai) of the 

elastic waves in homogeneous isotropic materials 

with voids are obtained as 

ci =
ω

Re  ki 
,  and  Ai = −Im ki  ........................... (18) 

where Re() and Im() are real and imaginary part of (). 

 

Reflections from Boundary Surface 

 

In this section, our aim is to analyse the reflection 

phenomenon of an incident plane longitudinal wave 

from the plane boundary surface of homogeneous 

isotropic half-space, H = { x, z ;  −∞ < 𝑥 < ∞, 𝑧 ≥ 0}, 

of elastic materials with voids. We shall assume that 

the train of elastic wave is originated from infinity and 

striking obliquely the plane boundary surface.  We 

shall assume that the surface is free from all kinds of 

stresses and we shall assume the plane strain parallel 

to the xz-plane only. 

Now we shall assume the following  

𝐮 =  u1, 0, u3 ;  ϕ = ϕ(x, z) 

define as 

u1 =
∂p

∂x
−

∂q

∂z
;  u3 =

∂p

∂z
+

∂q

∂x
 .................................... (19) 

The incident plane waves at the boundary surface 

of the considered half-space reflected the other three 

elastic waves, two coupled longitudinal and one shear 

wave. 

The boundary half-space (H) at z=0 is free from all 

kind of stresses/tractions. Mathematically the 

condition can be written as 

tzz = 0, tzx = 0, h3 = 0 .................................... (20) 

which are expressed as 

λD 
∂2p

∂x2
+
∂2p

∂z2
 + 2μD  

∂2p

∂z2
+

∂2q

∂x ∂z
 + βϕ

= 0,− − −(20) 

2
∂2p

∂x ∂z
+

∂2q

∂x2 −
∂2q

∂z2 = 0; 
∂ϕ

∂z
= 0 ............................... (21) 

The potentials {p,ϕ, q} in the half-space (H) are 

written as 

p = A0 exp P0 + A1 exp P1 + A2 exp P2  ......... (22) 

 ϕ = A0σ1 exp P0 + A1σ1 exp P1 + A2σ2 exp P2   

.......... (23) 

q = A3 exp P3  .................................. (24) 

where P0 = ik0(x1 sin θ0 − x3 cosθ0 − c0t), Pi =

iki(x1 sin θi + x3 cos θi − cit); (c0, k0) are the incident 

longitudinal phase speed and wavenumber 

respectively; 𝐴0 is the incident amplitude constant of 

longitudinal waves and 𝐴𝑖  (𝑖 = 1, 2)  is the amplitude 

constant of the reflected waves; σi =  ω2 − c1
2Dki /c2

2 

is the coupling constants; (θ0 , θi) are the incident 

angle and reflected angles respectively. 

The Snell’s law used for this problem is 

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 ...... (25) 

It may worth to note that the angle of incidence is 

equal to the angle of reflected for a particular wave. 

Using equations (22)-(25) into the (20) and (21), we 

obtain the following system of equations as 

 

a11 a12 a13

a21 a22 a23

a31 a32 a33

  

Z1

Z2

Z3

 =  

b1

b2

b3

  ........................... (26) 

where a1r =  λ D + 2 μ D cos2θr  −  β σr kr
2 ,  r =

1, 2  ; a13  =  2 μ D cos θ3 sin θ3 k3
2 ; a2r =

−2 μ D cos θr sin θr kr
2,  r = 1, 2  ; a23 =  cos2 θ3 −

sin2 θ3 k3
2 ; a3r = σr cos θr kr ,  (r = 1, 2) ; a33 = 0 ; b1 =

−a11  ; b2 = a21 ; b3 = a31  ; Zr = Ar/A0, (𝑟 = 1, 2, 3). 

By solving equation (26), we shall obtain the 

amplitude ratios. If the incident wave is shear wave 

then (𝑐0 , 𝐴0) represent for shear wave with 𝑏1 = a13 , 

𝑏2 = −a23  and 𝑏2 = a33 . 

 

Energy Ratios 

 

Consider the energy partitions (E∗), the rate of 

energy transmission at the surface (𝑧 = 0) per unit 

area per unit time is given by 

E∗ =  t33 , u 3 +  t31 , u 1 +  h3,ϕ   .......... (27) 

The energy of incident longitudinal waves is given 

as 

Einc =   λ + 2μ D −
σ1

k1
2 ωk1

3 cos θ1 A1
2 exp 2P0   (28) 
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The energy ratios (𝐸𝑖 , 𝑖 = 1, 2, 3) of various 

reflected waves are  

𝐸1 = 𝑍1
2 , ................................................................... (29) 

𝐸2 =
  𝜆+𝜇 𝐷−

𝛽𝜎2

𝑘2
2  𝑘2

3 cos 𝜃2

  𝜆+𝜇 𝐷−
𝛽𝜎1

𝑘1
2  𝑘1

3 cos 𝜃1

𝑍2
2 ..................................... (30) 

𝐸3 =
𝜇𝑘3

3 cos 𝜃3

  𝜆+𝜇 𝐷−
𝛽𝜎1

𝑘1
2  𝑘1

3 cos 𝜃1

𝑍2
2 ..................................... (31) 

 

Results and Discussion 

 

In order to understand the nature of dependence 

of phase speeds on angular frequency and the nature 

of dependence of reflection coefficients (amplitude 

and energy ratios) on angle of incidence, we have 

computed them numerically for a particular model 

using MATLAB software. The phase speeds and 

attenuation coefficients are computed from the 

Equation (18) while the amplitude and energy ratios 

are computed using equations (26) and (29)-(31) 

respectively. For this purpose, the relevant values of 

the following parameters are considered: 

It is seen that there are two coupled longitudinal 

waves that are assigning the fast-longitudinal 

wave (𝑐1) and slow longitudinal wave  𝑐2 . The 

dependence of phase speeds and attenuation 

coefficients on the angular frequency (𝜔) are shown 

in Figures 1-6. And the dependence of Amplitude and 

energy ratios on incident angle (𝜃0) are shown in 

Figures 7-12. All the Figures show that the effect of 

mechanical relaxation time (𝜏), Curve I indicate the 

value of 𝜏 = 0.013 𝑠 and Curve II indicate the 

value 𝜏 = 0. 

In Figure 1-2, the phase speeds of fast and slow 

longitudinal waves (𝑐1 and 𝑐2) increase as increasing 

angular frequency, and the absence of mechanical 

relaxation time (𝜏) show higher value than the normal 

values. In Figure 3, the phase speed of shear wave (𝑐3) 

starts from certain value and increase as increasing 

angular frequency while the absence of mechanical 

relaxation time shows constant speed for the shear 

wave. 

The corresponding attenuation coefficients are 

shown in Figure 4-6. The attenuation coefficient of 

fast longitudinal wave (|𝐴1|) is seen in Figure 4, it 

starts increasing from certain value upto the 

maximum and then decrease as increasing angular 

frequency. In Figure 5, the attenuation coefficient of 

slow longitudinal wave (|𝐴2|) starts decrease from 

certain value as increasing angular frequency. The 

absence of mechanical relaxation time (i.e. 𝜏 = 0) has 

shown higher value than the normal value (i.e. 𝜏 = 

0013𝑠). It is also seen that the value of |𝐴1| is lower 

than |𝐴2|. It is seen in the Figure 6 that there is no 

attenuation for the shear wave in the absence of 

mechanical relaxation time while the normal shear 

wave attenuation coefficient |𝐴3| increase as 

increasing angular frequency. 

The amplitude ratios for incident fast-longitudinal 

wave are depicted in Figure 7-9 while the energy 

ratios are depicted in Figure 10-12. We have plotted 

the amplitude and energy ratios at the angular 

frequency of 5 𝑠−1. In Figure 7, the amplitude ratio of 

reflected fast-longitudinal wave (|𝑍1|) increase as 

increasing angle of incidence (𝜃0) while the amplitude 

ratio |𝑍2| of slow longitudinal wave decrease as 

increasing angle of incidence, seen in Figure 8. The 

amplitude ratio |𝑍3| of shear wave has shown 

parabolic nature between the normal (𝜃0 = 0𝑜) and 

grazing (𝜃0 = 90𝑜) angle of incidence as shown in 

Figure 9. The amplitude ratio in the absence of 

mechanical relaxation time has lower value than the 

normal amplitude ratios. 

The energy ratios for incident fast-longitudinal 

waves are found in Figure 10-12. The energy ratio of 

fast-longitudinal wave (|𝐸1|), in Figure 10, increase 

from certain value upto the grazing angle of 

incidence. And the ratio |𝐸2| of slow longitudinal wave 

decrease as increasing angle of incidence as shown in 

Figure 11. In Figure 12, the shear wave energy ratio 

(|𝐸3|) also show parabolic nature between the normal 

and grazing angle of incidence. The normal 

mechanical relaxation time show higher values than 

the absence throughout the energy ratios.  It is also 

noted that the curves II of the energy ratios, |𝐸2| and 

|𝐸3| of slow longitudinal and shear wave, are 

multiplied by 0.9 to show more clearly the effect of 

mechanical relaxation time. 

 

Conclusions 

 

The effect of thermal relaxation time in the elastic 

wave propagation in the homogeneous isotropic 

elastic materials with voids has been investigated. The 

formula for the phase speeds and the corresponding 

attenuation coefficients are obtained. The reflection 

phenomenon of incident fast-longitudinal wave at the 

boundary surface has also been studied and the 

amplitude and energy ratios are found. Numerically 

these observations are calculated for a particular 

material model to see the effect of mechanical 

relaxation time. The following are the conclusions: 
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Symbol Value Unit 

𝝀 7.59 × 1010  𝑁/𝑚2 

𝝁 1.89 × 1010  𝑁/𝑚2 

𝝆 2.19 × 103 𝐾𝑔/𝑚3 

𝜶 1 × 10−10 𝑁 

𝜷 1.02 × 1010  𝑁/𝑚2 

𝝃 1.475 × 1010  𝑁/𝑚2 

𝒃 0.25 × 1010  𝑁𝑠/𝑚2 

𝝉 0.013  𝑠 

𝒌 0.00753 𝑚2 

𝝎 5 𝑠−1 

 

Table 1 | Value of parameters. 

Figure 1 | Phase speed of fast longitudinal wave (C1). 

Figure 2 | Phase speed of slow longitudinal wave (C2). Figure 3 | Phase speed of shear wave (C3). 

Figure 4 | Attenuation coefficient of fast longitudinal 

wave (|A1|). 

Figure 5 | Attenuation coefficient of slow longitudinal 

wave (|A2|). 
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Figure 7 | Amplitude ratio of fast longitudinal wave (|Z1|). 

Figure 8 | Amplitude ratio of slow longitudinal wave 
(|Z2|). 

Figure 9 | Amplitude ratio of shear wave (|Z3|). 

Figure 10 | Energy ratio of fast longitudinal wave (|E1|). Figure 11 | Energy ratio of slow longitudinal wave (|E2|). 

Figure 6 | Attenuation coefficient of shear wave (|A3|). 
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